29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Tissue Biomarker Panel Predicting Systemic Progression after PSA Recurrence Post-Definitive Prostate Cancer Therapy

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Many men develop a rising PSA after initial therapy for prostate cancer. While some of these men will develop a local or metastatic recurrence that warrants further therapy, others will have no evidence of disease progression. We hypothesized that an expression biomarker panel can predict which men with a rising PSA would benefit from further therapy.

          Methodology/Principal Findings

          A case-control design was used to test the association of gene expression with outcome. Systemic (SYS) progression cases were men post-prostatectomy who developed systemic progression within 5 years after PSA recurrence. PSA progression controls were matched men post-prostatectomy with PSA recurrence but no evidence of clinical progression within 5 years. Using expression arrays optimized for paraffin-embedded tissue RNA, 1021 cancer-related genes were evaluated–including 570 genes implicated in prostate cancer progression. Genes from 8 previously reported marker panels were included. A systemic progression model containing 17 genes was developed. This model generated an AUC of 0.88 (95% CI: 0.84–0.92). Similar AUCs were generated using 3 previously reported panels. In secondary analyses, the model predicted the endpoints of prostate cancer death (in SYS cases) and systemic progression beyond 5 years (in PSA controls) with hazard ratios 2.5 and 4.7, respectively (log-rank p-values of 0.0007 and 0.0005). Genes mapped to 8q24 were significantly enriched in the model.

          Conclusions/Significance

          Specific gene expression patterns are significantly associated with systemic progression after PSA recurrence. The measurement of gene expression pattern may be useful for determining which men may benefit from additional therapy after PSA recurrence.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Gene expression profiling identifies clinically relevant subtypes of prostate cancer.

          Prostate cancer, a leading cause of cancer death, displays a broad range of clinical behavior from relatively indolent to aggressive metastatic disease. To explore potential molecular variation underlying this clinical heterogeneity, we profiled gene expression in 62 primary prostate tumors, as well as 41 normal prostate specimens and nine lymph node metastases, using cDNA microarrays containing approximately 26,000 genes. Unsupervised hierarchical clustering readily distinguished tumors from normal samples, and further identified three subclasses of prostate tumors based on distinct patterns of gene expression. High-grade and advanced stage tumors, as well as tumors associated with recurrence, were disproportionately represented among two of the three subtypes, one of which also included most lymph node metastases. To further characterize the clinical relevance of tumor subtypes, we evaluated as surrogate markers two genes differentially expressed among tumor subgroups by using immunohistochemistry on tissue microarrays representing an independent set of 225 prostate tumors. Positive staining for MUC1, a gene highly expressed in the subgroups with "aggressive" clinicopathological features, was associated with an elevated risk of recurrence (P = 0.003), whereas strong staining for AZGP1, a gene highly expressed in the other subgroup, was associated with a decreased risk of recurrence (P = 0.0008). In multivariate analysis, MUC1 and AZGP1 staining were strong predictors of tumor recurrence independent of tumor grade, stage, and preoperative prostate-specific antigen levels. Our results suggest that prostate tumors can be usefully classified according to their gene expression patterns, and these tumor subtypes may provide a basis for improved prognostication and treatment stratification.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Concordance among gene-expression-based predictors for breast cancer.

            Gene-expression-profiling studies of primary breast tumors performed by different laboratories have resulted in the identification of a number of distinct prognostic profiles, or gene sets, with little overlap in terms of gene identity. To compare the predictions derived from these gene sets for individual samples, we obtained a single data set of 295 samples and applied five gene-expression-based models: intrinsic subtypes, 70-gene profile, wound response, recurrence score, and the two-gene ratio (for patients who had been treated with tamoxifen). We found that most models had high rates of concordance in their outcome predictions for the individual samples. In particular, almost all tumors identified as having an intrinsic subtype of basal-like, HER2-positive and estrogen-receptor-negative, or luminal B (associated with a poor prognosis) were also classified as having a poor 70-gene profile, activated wound response, and high recurrence score. The 70-gene and recurrence-score models, which are beginning to be used in the clinical setting, showed 77 to 81 percent agreement in outcome classification. Even though different gene sets were used for prognostication in patients with breast cancer, four of the five tested showed significant agreement in the outcome predictions for individual patients and are probably tracking a common set of biologic phenotypes. Copyright 2006 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression.

              Many studies have used DNA microarrays to identify the gene expression signatures of human cancer, yet the critical features of these often unmanageably large signatures remain elusive. To address this, we developed a statistical method, comparative metaprofiling, which identifies and assesses the intersection of multiple gene expression signatures from a diverse collection of microarray data sets. We collected and analyzed 40 published cancer microarray data sets, comprising 38 million gene expression measurements from >3,700 cancer samples. From this, we characterized a common transcriptional profile that is universally activated in most cancer types relative to the normal tissues from which they arose, likely reflecting essential transcriptional features of neoplastic transformation. In addition, we characterized a transcriptional profile that is commonly activated in various types of undifferentiated cancer, suggesting common molecular mechanisms by which cancer cells progress and avoid differentiation. Finally, we validated these transcriptional profiles on independent data sets.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2008
                28 May 2008
                : 3
                : 5
                : e2318
                Affiliations
                [1 ]Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
                [2 ]Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
                [3 ]Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
                University of Minnesota, United States of America
                Author notes

                Conceived and designed the experiments: RJ TK TN EB BD GK KB. Performed the experiments: TK TN. Analyzed the data: YA RJ TK TN BM SA EB KB. Contributed reagents/materials/analysis tools: YA RJ TK BM SA EB KB. Wrote the paper: RJ TN KB.

                Article
                07-PONE-RA-03167R1
                10.1371/journal.pone.0002318
                2565588
                18846227
                297c6521-5b11-4b85-9ec0-6d9d64725231
                Nakagawa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 27 December 2007
                : 12 March 2008
                Page count
                Pages: 14
                Categories
                Research Article
                Genetics and Genomics/Cancer Genetics
                Pathology/Molecular Pathology
                Urology/Prostate Cancer

                Uncategorized
                Uncategorized

                Comments

                Comment on this article