Blog
About

50
views
0
recommends
+1 Recommend
1 collections
    5
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Pomegranate as a functional food and nutraceutical source.

      Annual review of food science and technology

      chemistry, Punicaceae, analysis, administration & dosage, Phenols, Humans, adverse effects, Functional Food, Fruit, Food-Drug Interactions, Flavonoids, Dietary Supplements, Beverages, Antioxidants, Animals

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pomegranate, a fruit native to the Middle East, has gained widespread popularity as a functional food and nutraceutical source. The health effects of the whole fruit, as well as its juices and extracts, have been studied in relation to a variety of chronic diseases. Promising results against cardiovascular disease, diabetes, and prostate cancer have been reported from human clinical trials. The in vitro antioxidant activity of pomegranate has been attributed to its high polyphenolic content, specifically punicalagins, punicalins, gallagic acid, and ellagic acid. These compounds are metabolized during digestion to ellagic acid and urolithins, suggesting that the bioactive compounds that provide in vivo antioxidant activity may not be the same as those present in the whole food. Anthocyanins and the unique fatty acid profile of the seed oil may also play a role in pomegranate's health effects. A more complete characterization of pomegranate components and their physiological fate may provide mechanistic insight into the potential health benefits observed in clinical trials.

          Related collections

          Most cited references 115

          • Record: found
          • Abstract: found
          • Article: not found

          Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing.

          The antioxidant activity of pomegranate juices was evaluated by four different methods (ABTS, DPPH, DMPD, and FRAP) and compared to those of red wine and a green tea infusion. Commercial pomegranate juices showed an antioxidant activity (18-20 TEAC) three times higher than those of red wine and green tea (6-8 TEAC). The activity was higher in commercial juices extracted from whole pomegranates than in experimental juices obtained from the arils only (12-14 TEAC). HPLC-DAD and HPLC-MS analyses of the juices revealed that commercial juices contained the pomegranate tannin punicalagin (1500-1900 mg/L) while only traces of this compound were detected in the experimental juice obtained from arils in the laboratory. This shows that pomegranate industrial processing extracts some of the hydrolyzable tannins present in the fruit rind. This could account for the higher antioxidant activity of commercial juices compared to the experimental ones. In addition, anthocyanins, ellagic acid derivatives, and hydrolyzable tannins were detected and quantified in the pomegranate juices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anthocyanins: natural colorants with health-promoting properties.

            Anthocyanins are flavonoids in fruits and vegetables that render them vivid red to blue. To date, there have been more than 635 anthocyanins identified in nature, featuring six common aglycones and various types of glycosylations and acylations. Dietary consumption of anthocyanins is high compared to other flavonoids, owing to their wide distribution in plant materials. Based upon many cell-line studies, animal models, and human clinical trials, it has been suggested that anthocyanins possess anti-inflammatory and anti-carcinogenic activity, cardiovascular disease prevention, obesity control, and diabetes alleviation properties, all of which are more or less associated with their potent antioxidant property. Evidence suggests that absorption of anthocyanins occurs in the stomach and small intestine. Epithelial tissue uptake seems to be highly efficient, yet transportation into circulation, tissue distribution, and urine excretion are very limited. The bioactivity of bioavailable anthocyanins should be a focus of future research regarding their putative health-promoting effects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice.

              Pomegranate (Punica granatum L.) fruits are widely consumed as juice (PJ). The potent antioxidant and anti-atherosclerotic activities of PJ are attributed to its polyphenols including punicalagin, the major fruit ellagitannin, and ellagic acid (EA). Punicalagin is the major antioxidant polyphenol ingredient in PJ. Punicalagin, EA, a standardized total pomegranate tannin (TPT) extract and PJ were evaluated for in vitro antiproliferative, apoptotic and antioxidant activities. Punicalagin, EA and TPT were evaluated for antiproliferative activity at 12.5-100 microg/ml on human oral (KB, CAL27), colon (HT-29, HCT116, SW480, SW620) and prostate (RWPE-1, 22Rv1) tumor cells. Punicalagin, EA and TPT were evaluated at 100 microg/ml concentrations for apoptotic effects and at 10 microg/ml concentrations for antioxidant properties. However, to evaluate the synergistic and/or additive contributions from other PJ phytochemicals, PJ was tested at concentrations normalized to deliver equivalent amounts of punicalagin (w/w). Apoptotic effects were evaluated against the HT-29 and HCT116 colon cancer cell lines. Antioxidant effects were evaluated using inhibition of lipid peroxidation and Trolox equivalent antioxidant capacity (TEAC) assays. Pomegranate juice showed greatest antiproliferative activity against all cell lines by inhibiting proliferation from 30% to 100%. At 100 microg/ml, PJ, EA, punicalagin and TPT induced apoptosis in HT-29 colon cells. However, in the HCT116 colon cells, EA, punicalagin and TPT but not PJ induced apoptosis. The trend in antioxidant activity was PJ>TPT>punicalagin>EA. The superior bioactivity of PJ compared to its purified polyphenols illustrated the multifactorial effects and chemical synergy of the action of multiple compounds compared to single purified active ingredients.
                Bookmark

                Author and article information

                Journal
                10.1146/annurev-food-030810-153709
                22129380

                Comments

                Comment on this article