28
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The future of Southeast Asia’s forests

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          While Southeast Asia’s forests play important roles in biodiversity conservation and global carbon (C) balance, the region is also a deforestation hotspot. Here, we consider the five shared socioeconomic pathways (SSPs) to portray a range of plausible futures for the region’s forests, employing a state-of-the-art land change modelling procedure and remotely sensed data. We find that by 2050 under the worst-case scenario, SSP 3 (regional rivalry/a rocky road), the region’s forests would shrink by 5.2 million ha. The region’s aboveground forest carbon stock (AFCS) would decrease by 790 Tg C, 21% of which would be due to old-growth forest loss. Conversely, under the best-case scenario, SSP 1 (sustainability/taking the green road), the region is projected to gain 19.6 million ha of forests and 1651 Tg C of AFCS. The choice of the pathway is thus critical for the future of the region’s forests and their ecosystem functions and services.

          Abstract

          Southeast Asia’s forests play important roles in the society, but the region is a deforestation hotspot. Here, the authors examined the future changes in the region’s forests under different scenarios and found that by 2050 under a regional rivalry/rocky road scenario, the region’s forests would shrink by 5.2 million ha.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: not found
          • Article: not found

          A new scenario framework for climate change research: the concept of shared socioeconomic pathways

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s.

            Global demand for agricultural products such as food, feed, and fuel is now a major driver of cropland and pasture expansion across much of the developing world. Whether these new agricultural lands replace forests, degraded forests, or grasslands greatly influences the environmental consequences of expansion. Although the general pattern is known, there still is no definitive quantification of these land-cover changes. Here we analyze the rich, pan-tropical database of classified Landsat scenes created by the Food and Agricultural Organization of the United Nations to examine pathways of agricultural expansion across the major tropical forest regions in the 1980s and 1990s and use this information to highlight the future land conversions that probably will be needed to meet mounting demand for agricultural products. Across the tropics, we find that between 1980 and 2000 more than 55% of new agricultural land came at the expense of intact forests, and another 28% came from disturbed forests. This study underscores the potential consequences of unabated agricultural expansion for forest conservation and carbon emissions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Averting biodiversity collapse in tropical forest protected areas.

              The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon. With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment and other environmental stresses. As pressures mount, it is vital to know whether existing reserves can sustain their biodiversity. A critical constraint in addressing this question has been that data describing a broad array of biodiversity groups have been unavailable for a sufficiently large and representative sample of reserves. Here we present a uniquely comprehensive data set on changes over the past 20 to 30 years in 31 functional groups of species and 21 potential drivers of environmental change, for 60 protected areas stratified across the world’s major tropical regions. Our analysis reveals great variation in reserve ‘health’: about half of all reserves have been effective or performed passably, but the rest are experiencing an erosion of biodiversity that is often alarmingly widespread taxonomically and functionally. Habitat disruption, hunting and forest-product exploitation were the strongest predictors of declining reserve health. Crucially, environmental changes immediately outside reserves seemed nearly as important as those inside in determining their ecological fate, with changes inside reserves strongly mirroring those occurring around them. These findings suggest that tropical protected areas are often intimately linked ecologically to their surrounding habitats, and that a failure to stem broad-scale loss and degradation of such habitats could sharply increase the likelihood of serious biodiversity declines.
                Bookmark

                Author and article information

                Contributors
                estoque.ronaldcanero@nies.go.jp
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                23 April 2019
                23 April 2019
                2019
                : 10
                : 1829
                Affiliations
                [1 ]ISNI 0000 0001 0746 5933, GRID grid.140139.e, National Institute for Environmental Studies, ; Tsukuba, Japan
                [2 ]ISNI 0000 0004 1758 4137, GRID grid.434554.7, European Commission, Joint Research Centre (JRC), ; Ispra, Italy
                [3 ]ISNI 0000 0004 0621 3306, GRID grid.459644.e, Institute for Global Environmental Strategies, ; Kanagawa, Japan
                [4 ]ISNI 0000 0001 2369 4728, GRID grid.20515.33, University of Tsukuba, ; Tsukuba, Japan
                Article
                9646
                10.1038/s41467-019-09646-4
                6478739
                31015425
                2986c6a8-9d2d-4196-b9d8-7c299ea1b59c
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 20 October 2018
                : 21 March 2019
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                climate-change mitigation,sustainability
                Uncategorized
                climate-change mitigation, sustainability

                Comments

                Comment on this article