+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bacterial Strategies to Preserve Cell Wall Integrity Against Environmental Threats

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Bacterial cells are surrounded by an exoskeleton-like structure, the cell wall, composed primarily of the peptidoglycan (PG) sacculus. This structure is made up of glycan strands cross-linked by short peptides generating a covalent mesh that shapes bacteria and prevents their lysis due to their high internal osmotic pressure. Even though the PG is virtually universal in bacteria, there is a notable degree of diversity in its chemical structure. Modifications in both the sugars and peptides are known to be instrumental for bacteria to cope with diverse environmental challenges. In this review, we summarize and discuss the cell wall strategies to withstand biotic and abiotic environmental insults such as the effect of antibiotics targeting cell wall enzymes, predatory PG hydrolytic proteins, and PG signaling systems. Finally we will discuss the opportunities that species-specific PG variability might open to develop antimicrobial therapies.

          Related collections

          Most cited references 90

          • Record: found
          • Abstract: found
          • Article: not found

          Peptidoglycan structure and architecture.

          The peptidoglycan (murein) sacculus is a unique and essential structural element in the cell wall of most bacteria. Made of glycan strands cross-linked by short peptides, the sacculus forms a closed, bag-shaped structure surrounding the cytoplasmic membrane. There is a high diversity in the composition and sequence of the peptides in the peptidoglycan from different species. Furthermore, in several species examined, the fine structure of the peptidoglycan significantly varies with the growth conditions. Limited number of biophysical data on the thickness, elasticity and porosity of peptidoglycan are available. The different models for the architecture of peptidoglycan are discussed with respect to structural and physical parameters.
            • Record: found
            • Abstract: found
            • Article: not found

            Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan.

            Although the role of Toll-like receptors in extracellular bacterial sensing has been investigated intensively, intracellular detection of bacteria through Nod molecules remains largely uncharacterized. Here, we show that human Nod1 specifically detects a unique diaminopimelate-containing N-acetylglucosamine-N-acetylmuramic acid (GlcNAc-MurNAc) tripeptide motif found in Gram-negative bacterial peptidoglycan, resulting in activation of the transcription factor NF-kappaB pathway. Moreover, we show that in epithelial cells (which represent the first line of defense against invasive pathogens), Nod1is indispensable for intracellular Gram-negative bacterial sensing.
              • Record: found
              • Abstract: found
              • Article: not found

              Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease.

              NOD2, a protein associated with susceptibility to Crohn's disease, confers responsiveness to bacterial preparations of lipopolysaccharide and peptidoglycan, but the precise moiety recognized remains elusive. Biochemical and functional analyses identified muramyl dipeptide (MurNAc-L-Ala-D-isoGln) derived from peptidoglycan as the essential structure in bacteria recognized by NOD2. Replacement of L-Ala for D-Ala or D-isoGln for L-isoGln eliminated the ability of muramyl dipeptide to stimulate NOD2, indicating stereoselective recognition. Muramyl dipeptide was recognized by NOD2 but not by TLR2 or co-expression of TLR2 with TLR1 or TLR6. NOD2 mutants associated with susceptibility to Crohn's disease were deficient in their recognition of muramyl dipeptide. Notably, peripheral blood mononuclear cells from individuals homozygous for the major disease-associated L1007fsinsC NOD2 mutation responded to lipopolysaccharide but not to synthetic muramyl dipeptide. Thus, NOD2 mediates the host response to bacterial muropeptides derived from peptidoglycan, an activity that is important for protection against Crohn's disease. Because muramyl dipeptide is the essential structure of peptidoglycan required for adjuvant activity, these results also have implications for understanding adjuvant function and effective vaccine development.

                Author and article information

                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                31 August 2018
                : 9
                Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University , Umeå, Sweden
                Author notes

                Edited by: Christopher Davies, Medical University of South Carolina, United States

                Reviewed by: Joseph P. Dillard, University of Wisconsin–Madison, United States; Ivo G. Boneca, Institut Pasteur, France

                This article was submitted to Antimicrobials, Resistance and Chemotherapy, a section of the journal Frontiers in Microbiology

                Copyright © 2018 Yadav, Espaillat and Cava.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Page count
                Figures: 1, Tables: 2, Equations: 0, References: 92, Pages: 9, Words: 0
                Funded by: Knut och Alice Wallenbergs Stiftelse 10.13039/501100004063
                Award ID: wallenberg academy fellow
                Funded by: Kempestiftelserna 10.13039/501100007067
                Funded by: Vetenskapsrådet 10.13039/501100004359

                Microbiology & Virology

                plasticity, innate immunity, antibiotic resistance, lysozyme, peptidoglycan


                Comment on this article