27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increased circulating follicular helper T cells with decreased programmed death-1 in chronic renal allograft rejection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Chronic antibody-mediated rejection is a major issue that affects long-term renal allograft survival. Since follicular helper T (Tfh) cells promote the development of antigen-specific B cells in alloimmune responses, we investigated the potential roles of Tfh cells, B cells and their alloimmune-regulating molecules in the pathogenesis of chronic renal allograft rejection in this study.

          Methods

          The frequency of Tfh, B cells and the levels of their alloimmune-regulating molecules including chemokine receptor type 5 (CXCR5), inducible T cell co-stimulator (ICOS), programmed death-1 (PD-1), ICOSL, PDL-1 and interleukin-21 (IL-21), of peripheral blood were comparatively measured in 42 primary renal allograft recipients within 1–3 years after transplantation. Among them, 24 patients had definite chronic rejection, while other 18 patients had normal renal function.

          Results

          Tfh-cell ratio was significantly increased with PD-1 down-regulation in the patients with chronic renal allograft rejection, while B cells and the alloimmune-regulating molecules studied did not show any appreciable change in parallel.

          Conclusions

          The patients with chronic renal allograft rejection have a characteristic increase in circulating Tfh cells with a decrease in PD-1 expression. These pathological changes may be a therapeutic target for the treatment of chronic renal allograft rejection and can be useful as a clinical index for monitoring conditions of renal transplant.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Cxc Chemokine Receptor 5 Expression Defines Follicular Homing T Cells with B Cell Helper Function

          Leukocyte traffic through secondary lymphoid tissues is finely tuned by chemokines. We have studied the functional properties of a human T cell subset marked by the expression of CXC chemokine receptor 5 (CXCR5). Memory but not naive T cells from tonsils are CXCR5+ and migrate in response to the B cell–attracting chemokine 1 (BCA-1), which is selectively expressed by reticular cells and blood vessels within B cell follicles. Tonsillar CXCR5+ T cells do not respond to other chemokines present in secondary lymphoid tissues, including secondary lymphoid tissue chemokine (SLC), EBV-induced molecule 1 ligand chemokine (ELC), and stromal cell–derived factor 1 (SDF-1). The involvement of tonsillar CXCR5+ T cells in humoral immune responses is suggested by their localization in the mantle and light zone germinal centers of B cell follicles and by the concomitant expression of activation and costimulatory markers, including CD69, HLA-DR, and inducible costimulator (ICOS). Peripheral blood CXCR5+ T cells also belong to the CD4+ memory T cell subset but, in contrast to tonsillar cells, are in a resting state and migrate weakly to chemokines. CXCR5+ T cells are very inefficient in the production of cytokines but potently induce antibody production during coculture with B cells. These properties portray CXCR5+ T cells as a distinct memory T cell subset with B cell helper function, designated here as follicular B helper T cells (TFH).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells

            Memory B and plasma cells (PCs) are generated in the germinal center (GC). As PD-1 is highly expressed in T follicular helper cells (TFH), we investigated the role of PD-1 signaling in the humoral response. We found that PD-L1 and PD-L2 are upregulated on GC B cells. Pdcd1lg2 −/− , CD274 −/− Pdcd1lg2 −/− and Pdcd1 −/− mice had reduced numbers of long-lived PCs. The mechanism involved increased GC cell death and decreased TFH cytokine production in the absence of PD-1; the effect was selective, as remaining PCs had higher affinity. PD-1 expression on T cells and PD-L2 expression on B cells controlled TFH and PC numbers. Thus, PD-1 regulates selection and survival in the GC, impacting the quantity and quality of long-lived PCs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Programmed Death-1 (PD-1) Pathway Regulates Autoimmune Diabetes in Nonobese Diabetic (NOD) Mice

              Programmed death-1 (PD-1) receptor, an inhibitory costimulatory molecule found on activated T cells, has been demonstrated to play a role in the regulation of immune responses and peripheral tolerance. We investigated the role of this pathway in the development of autoimmune diabetes. PD-1 or PD-L1 but not PD-L2 blockade rapidly precipitated diabetes in prediabetic female nonobese diabetic (NOD) mice regardless of age (from 1 to 10-wk-old), although it was most pronounced in the older mice. By contrast, cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) blockade induced disease only in neonates. Male NOD mice also developed diabetes after PD-1–PD-L1 pathway blockade, but NOR mice, congenic to NOD but resistant to the development of diabetes, did not. Insulitis scores were significantly higher and frequency of interferon γ–producing GAD-reactive splenocytes was increased after PD-1–PD-L1 pathway blockade compared with controls. Interestingly, PD-L1 but not PD-L2 was found to be expressed on inflamed islets of NOD mice. These data demonstrate a central role for PD-1–PD-L1 interaction in the regulation of induction and progression of autoimmune diabetes in the NOD mouse and provide the rationale to develop new therapies to target this costimulatory pathway in this disease.
                Bookmark

                Author and article information

                Contributors
                shijian201205@163.com
                luofengbao@sohu.com
                dyqianqian@126.com
                xianlinxu@126.com
                czyyhxz@sina.cn
                Ying.Xia@uth.tmc.edu
                Journal
                BMC Nephrol
                BMC Nephrol
                BMC Nephrology
                BioMed Central (London )
                1471-2369
                3 November 2015
                3 November 2015
                2015
                : 16
                : 182
                Affiliations
                [ ]Third Clinical College of Soochow University, Changzhou, Jiangsu China
                [ ]The University of Texas Medical School at Houston, Houston, TX USA
                Article
                172
                10.1186/s12882-015-0172-8
                4630917
                26525294
                29a14941-70a9-4f1d-921e-d134215ad43d
                © Shi et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 26 May 2015
                : 19 October 2015
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2015

                Nephrology
                chronic renal allograft rejection,tfh cells,pd-1
                Nephrology
                chronic renal allograft rejection, tfh cells, pd-1

                Comments

                Comment on this article