+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      A Staphylococcus aureus Pore-Forming Toxin Subverts the Activity of ADAM10 to Cause Lethal Infection


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Staphylococcus aureus is a major cause of human disease, responsible for half a million infections and approximately 20,000 deaths per year in the United States alone 1, 2 . This pathogen secretes α-hemolysin, a pore-forming cytotoxin that contributes to the pathogenesis of pneumonia 35 . α-hemolysin injures epithelial cells by interacting with its receptor, the zinc-dependent metalloprotease ADAM10 6 . We show that mice harboring a conditional disruption of the Adam10 gene in lung epithelium are resistant to lethal pneumonia. Investigation of the molecular mechanism of toxin-receptor function revealed that α-hemolysin upregulates ADAM10 metalloprotease activity in alveolar epithelial cells, resulting in cleavage of the adherens junction protein E-cadherin. Cleavage is associated with disruption of epithelial barrier function, contributing to the pathogenesis of lethal acute lung injury. A metalloprotease inhibitor of ADAM10 prevents E-cadherin cleavage; similarly, E-cadherin proteolysis and barrier disruption is attenuated in ADAM10 knockout mice. Together, these data attest to the function of ADAM10 as the cellular receptor for α-hemolysin. The observation that Hla can usurp the metalloprotease activity of its receptor reveals a novel mechanism of pore-forming cytotoxin action in which pathologic insults are not solely the result of irreversible membrane injury, and defines ADAM10 inhibition as a strategy for disease modification.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Invasive methicillin-resistant Staphylococcus aureus infections in the United States.

          As the epidemiology of infections with methicillin-resistant Staphylococcus aureus (MRSA) changes, accurate information on the scope and magnitude of MRSA infections in the US population is needed. To describe the incidence and distribution of invasive MRSA disease in 9 US communities and to estimate the burden of invasive MRSA infections in the United States in 2005. Active, population-based surveillance for invasive MRSA in 9 sites participating in the Active Bacterial Core surveillance (ABCs)/Emerging Infections Program Network from July 2004 through December 2005. Reports of MRSA were investigated and classified as either health care-associated (either hospital-onset or community-onset) or community-associated (patients without established health care risk factors for MRSA). Incidence rates and estimated number of invasive MRSA infections and in-hospital deaths among patients with MRSA in the United States in 2005; interval estimates of incidence excluding 1 site that appeared to be an outlier with the highest incidence; molecular characterization of infecting strains. There were 8987 observed cases of invasive MRSA reported during the surveillance period. Most MRSA infections were health care-associated: 5250 (58.4%) were community-onset infections, 2389 (26.6%) were hospital-onset infections; 1234 (13.7%) were community-associated infections, and 114 (1.3%) could not be classified. In 2005, the standardized incidence rate of invasive MRSA was 31.8 per 100,000 (interval estimate, 24.4-35.2). Incidence rates were highest among persons 65 years and older (127.7 per 100,000; interval estimate, 92.6-156.9), blacks (66.5 per 100,000; interval estimate, 43.5-63.1), and males (37.5 per 100,000; interval estimate, 26.8-39.5). There were 1598 in-hospital deaths among patients with MRSA infection during the surveillance period. In 2005, the standardized mortality rate was 6.3 per 100,000 (interval estimate, 3.3-7.5). Molecular testing identified strains historically associated with community-associated disease outbreaks recovered from cultures in both hospital-onset and community-onset health care-associated infections in all surveillance areas. Invasive MRSA infection affects certain populations disproportionately. It is a major public health problem primarily related to health care but no longer confined to intensive care units, acute care hospitals, or any health care institution.
            • Record: found
            • Abstract: not found
            • Article: not found

            The ADAMs family of metalloproteases: multidomain proteins with multiple functions.

              • Record: found
              • Abstract: found
              • Article: not found

              ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and beta-catenin translocation.

              E-cadherin controls a wide array of cellular behaviors, including cell-cell adhesion, differentiation, and tissue development. We show here that E-cadherin is cleaved specifically by ADAM (a disintegrin and metalloprotease) 10 in its ectodomain. Analysis of ADAM10-deficient fibroblasts, inhibitor studies, and RNA interference-mediated down-regulation of ADAM10 demonstrated that ADAM10 is responsible not only for the constitutive shedding but also for the regulated shedding of this adhesion molecule in fibroblasts and keratinocytes. ADAM10-mediated E-cadherin shedding affects epithelial cell-cell adhesion as well as cell migration. Furthermore, the shedding of E-cadherin by ADAM10 modulates the beta-catenin subcellular localization and downstream signaling. ADAM10 overexpression in epithelial cells increased the expression of the beta-catenin downstream gene cyclin D1 dose-dependently and enhanced cell proliferation. In ADAM10-deficient mouse embryos, the C-terminal E-cadherin fragment is not generated, and the full-length protein accumulates, highlighting the in vivo relevance for ADAM10 in E-cadherin shedding. Our data strongly suggest that this protease constitutes a major regulatory element for the multiple functions of E-cadherin under physiological as well as pathological conditions.

                Author and article information

                Nat Med
                Nature Medicine
                1 August 2011
                18 September 2011
                1 April 2012
                : 17
                : 10
                : 1310-1314
                [1 ]Department of Pediatrics, University of Chicago, 920 E. 58 th St., Chicago, IL 60637
                [2 ]Department of Microbiology, University of Chicago, 920 E. 58 th St., Chicago, IL 60637
                [3 ]Department of Pathology, University of Chicago, 920 E. 58 th St., Chicago, IL 60637
                Author notes

                These authors contributed equally to this work


                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                Funded by: National Institute of Allergy and Infectious Diseases Extramural Activities : NIAID
                Award ID: U54 AI057153-08 || AI



                Comment on this article