+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plasminogen activator inhibitor-1 is elevated in patients with COPD independent of metabolic and cardiovascular function

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Plasminogen activator inhibitor-1 (PAI-1), a major inhibitor of fibrinolysis, is associated with thrombosis, obesity, insulin resistance, dyslipidemia, and premature aging, which all are coexisting conditions of chronic obstructive pulmonary disease (COPD). The role of PAI-1 in COPD with respect to metabolic and cardiovascular functions is unclear.


          In this study, which was nested within a prospective cohort study, the serum levels of PAI-1 were cross-sectionally measured in 74 stable COPD patients (Global Initiative for Chronic Obstructive Lung Disease [GOLD] Stages I–IV) and 18 controls without lung disease. In addition, triglycerides, high-density lipoprotein cholesterol, fasting plasma glucose, waist circumference, blood pressure, smoking status, high-sensitive C-reactive protein (hs-CRP), adiponectin, ankle–brachial index, N-terminal pro-B-type natriuretic peptide, and history of comorbidities were also determined.


          The serum levels of PAI-1 were significantly higher in COPD patients than in controls, independent of a broad spectrum of possible confounders including metabolic and cardiovascular dysfunction. A multivariate regression analysis revealed triglyceride and hs-CRP levels to be the best predictors of PAI-1 within COPD. GOLD Stages II and III remained independently associated with higher PAI-1 levels in a final regression analysis.


          The data from the present study showed that the serum levels of PAI-1 are higher in patients with COPD and that moderate-to-severe airflow limitation, hypertriglyceridemia, and systemic inflammation are independent predictors of an elevated PAI-1 level. PAI-1 may be a potential biomarker candidate for COPD-specific and extra-pulmonary manifestations.

          Related collections

          Most cited references 31

          • Record: found
          • Abstract: not found
          • Article: not found

          ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC.

            • Record: found
            • Abstract: found
            • Article: not found

            Mortality in COPD: Role of comorbidities.

            Chronic obstructive pulmonary disease (COPD) represents an increasing burden throughout the world. COPD-related mortality is probably underestimated because of the difficulties associated with identifying the precise cause of death. Respiratory failure is considered the major cause of death in advanced COPD. Comorbidities such as cardiovascular disease and lung cancer are also major causes and, in mild-to-moderate COPD, are the leading causes of mortality. The links between COPD and these conditions are not fully understood. However, a link through the inflammation pathway has been suggested, as persistent low-grade pulmonary and systemic inflammation, both known risk factors for cardiovascular disease and cancer, are present in COPD independent of cigarette smoking. Lung-specific measurements, such as forced expiratory volume in one second (FEV(1)), predict mortality in COPD and in the general population. However, composite tools, such as health-status measurements (e.g. St George's Respiratory Questionnaire) and the BODE index, which incorporates Body mass index, lung function (airflow Obstruction), Dyspnoea and Exercise capacity, predict mortality better than FEV(1) alone. These multidimensional tools may be more valuable because, unlike predictive approaches based on single parameters, they can reflect the range of comorbidities and the complexity of underlying mechanisms associated with COPD. The current paper reviews the role of comorbidities in chronic obstructive pulmonary disease mortality, the putative underlying pathogenic link between chronic obstructive pulmonary disease and comorbid conditions (i.e. inflammation), and the tools used to predict chronic obstructive pulmonary disease mortality.
              • Record: found
              • Abstract: found
              • Article: not found

              COPD as a disease of accelerated lung aging.

              There is increasing evidence for a close relationship between aging and chronic inflammatory diseases. COPD is a chronic inflammatory disease of the lungs, which progresses very slowly and the majority of patients are therefore elderly. We here review the evidence that accelerating aging of lung in response to oxidative stress is involved in the pathogenesis and progression of COPD, particularly emphysema. Aging is defined as the progressive decline of homeostasis that occurs after the reproductive phase of life is complete, leading to an increasing risk of disease or death. This results from a failure of organs to repair DNA damage by oxidative stress (nonprogrammed aging) and from telomere shortening as a result of repeated cell division (programmed aging). During aging, pulmonary function progressively deteriorates and pulmonary inflammation increases, accompanied by structural changes, which are described as senile emphysema. Environmental gases, such as cigarette smoke or other pollutants, may accelerate the aging of lung or worsen aging-related events in lung by defective resolution of inflammation, for example, by reducing antiaging molecules, such as histone deacetylases and sirtuins, and this consequently induces accelerated progression of COPD. Recent studies of the signal transduction mechanisms, such as protein acetylation pathways involved in aging, have identified novel antiaging molecules that may provide a new therapeutic approach to COPD.

                Author and article information

                Int J Chron Obstruct Pulmon Dis
                Int J Chron Obstruct Pulmon Dis
                International Journal of COPD
                International Journal of Chronic Obstructive Pulmonary Disease
                Dove Medical Press
                22 March 2017
                : 12
                : 981-987
                [1 ]Pneumology, LungenClinic Grosshansdorf, Grosshansdorf, Germany
                [2 ]Pulmonary Research Institute at LungenClinic Grosshansdorf, Grosshansdorf, Germany
                [3 ]Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
                [4 ]Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
                [5 ]Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
                [6 ]Department of Medicine, Trelleborg Hospital, Trelleborg, Sweden
                [7 ]Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
                Author notes
                Correspondence: Benjamin Waschki, LungenClinic Grosshansdorf, Woehrendamm 80, 22927 Grosshansdorf, Germany, Email b.waschki@
                © 2017 Waschki et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Original Research


                Comment on this article