381
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DrugBank: a knowledgebase for drugs, drug actions and drug targets

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          DrugBank is a richly annotated resource that combines detailed drug data with comprehensive drug target and drug action information. Since its first release in 2006, DrugBank has been widely used to facilitate in silico drug target discovery, drug design, drug docking or screening, drug metabolism prediction, drug interaction prediction and general pharmaceutical education. The latest version of DrugBank (release 2.0) has been expanded significantly over the previous release. With ∼4900 drug entries, it now contains 60% more FDA-approved small molecule and biotech drugs including 10% more ‘experimental’ drugs. Significantly, more protein target data has also been added to the database, with the latest version of DrugBank containing three times as many non-redundant protein or drug target sequences as before (1565 versus 524). Each DrugCard entry now contains more than 100 data fields with half of the information being devoted to drug/chemical data and the other half devoted to pharmacological, pharmacogenomic and molecular biological data. A number of new data fields, including food–drug interactions, drug–drug interactions and experimental ADME data have been added in response to numerous user requests. DrugBank has also significantly improved the power and simplicity of its structure query and text query searches. DrugBank is available at http://www.drugbank.ca

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          TTD: Therapeutic Target Database.

          X. Chen (2002)
          A number of proteins and nucleic acids have been explored as therapeutic targets. These targets are subjects of interest in different areas of biomedical and pharmaceutical research and in the development and evaluation of bioinformatics, molecular modeling, computer-aided drug design and analytical tools. A publicly accessible database that provides comprehensive information about these targets is therefore helpful to the relevant communities. The Therapeutic Target Database (TTD) is designed to provide information about the known therapeutic protein and nucleic acid targets described in the literature, the targeted disease conditions, the pathway information and the corresponding drugs/ligands directed at each of these targets. Cross-links to other databases are also introduced to facilitate the access of information about the sequence, 3D structure, function, nomenclature, drug/ligand binding properties, drug usage and effects, and related literature for each target. This database can be accessed at http://xin.cz3.nus.edu.sg/group/ttd/ttd.asp and it currently contains entries for 433 targets covering 125 disease conditions along with 809 drugs/ligands directed at each of these targets. Each entry can be retrieved through multiple methods including target name, disease name, drug/ligand name, drug/ligand function and drug therapeutic classification.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TarFisDock: a web server for identifying drug targets with docking approach

            TarFisDock is a web-based tool for automating the procedure of searching for small molecule–protein interactions over a large repertoire of protein structures. It offers PDTD (potential drug target database), a target database containing 698 protein structures covering 15 therapeutic areas and a reverse ligand–protein docking program. In contrast to conventional ligand–protein docking, reverse ligand–protein docking aims to seek potential protein targets by screening an appropriate protein database. The input file of this web server is the small molecule to be tested, in standard mol2 format; TarFisDock then searches for possible binding proteins for the given small molecule by use of a docking approach. The ligand–protein interaction energy terms of the program DOCK are adopted for ranking the proteins. To test the reliability of the TarFisDock server, we searched the PDTD for putative binding proteins for vitamin E and 4H-tamoxifen. The top 2 and 10% candidates of vitamin E binding proteins identified by TarFisDock respectively cover 30 and 50% of reported targets verified or implicated by experiments; and 30 and 50% of experimentally confirmed targets for 4H-tamoxifen appear amongst the top 2 and 5% of the TarFisDock predicted candidates, respectively. Therefore, TarFisDock may be a useful tool for target identification, mechanism study of old drugs and probes discovered from natural products. TarFisDock and PDTD are available at .
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              GeneCards: a novel functional genomics compendium with automated data mining and query reformulation support.

              Modern biology is shifting from the 'one gene one postdoc' approach to genomic analyses that include the simultaneous monitoring of thousands of genes. The importance of efficient access to concise and integrated biomedical information to support data analysis and decision making is therefore increasing rapidly, in both academic and industrial research. However, knowledge discovery in the widely scattered resources relevant for biomedical research is often a cumbersome and non-trivial task, one that requires a significant amount of training and effort. To develop a model for a new type of topic-specific overview resource that provides efficient access to distributed information, we designed a database called 'GeneCards'. It is a freely accessible Web resource that offers one hypertext 'card' for each of the more than 7000 human genes that currently have an approved gene symbol published by the HUGO/GDB nomenclature committee. The presented information aims at giving immediate insight into current knowledge about the respective gene, including a focus on its functions in health and disease. It is compiled by Perl scripts that automatically extract relevant information from several databases, including SWISS-PROT, OMIM, Genatlas and GDB. Analyses of the interactions of users with the Web interface of GeneCards triggered development of easy-to-scan displays optimized for human browsing. Also, we developed algorithms that offer 'ready-to-click' query reformulation support, to facilitate information retrieval and exploration. Many of the long-term users turn to GeneCards to quickly access information about the function of very large sets of genes, for example in the realm of large-scale expression studies using 'DNA chip' technology or two-dimensional protein electrophoresis. Freely available at http://bioinformatics.weizmann.ac.il/cards/ cards@bioinformatics.weizmann.ac.il
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                January 2008
                29 November 2007
                29 November 2007
                : 36
                : Database issue , Database issue
                : D901-D906
                Affiliations
                Department of Computing Science and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E8
                Author notes
                *To whom correspondence should be addressed.780-492-0383780-492-1071 david.wishart@ 123456ulberta.ca
                Article
                10.1093/nar/gkm958
                2238889
                18048412
                29ab3a52-398d-4932-b26f-594f2777054a
                © 2007 The Author(s)

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 September 2007
                : 11 October 2007
                : 15 October 2007
                Categories
                Articles

                Genetics
                Genetics

                Comments

                Comment on this article