73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Volatile Metabolites of Pathogens: A Systematic Review

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ideally, invading bacteria are detected as early as possible in critically ill patients: the strain of morbific pathogens is identified rapidly, and antimicrobial sensitivity is known well before the start of new antimicrobial therapy. Bacteria have a distinct metabolism, part of which results in the production of bacteria-specific volatile organic compounds (VOCs), which might be used for diagnostic purposes. Volatile metabolites can be investigated directly in exhaled air, allowing for noninvasive monitoring. The aim of this review is to provide an overview of VOCs produced by the six most abundant and pathogenic bacteria in sepsis, including Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli. Such VOCs could be used as biological markers in the diagnostic approach of critically ill patients. A systematic review of existing literature revealed 31 articles. All six bacteria of interest produce isopentanol, formaldehyde, methyl mercaptan, and trimethylamine. Since humans do not produce these VOCs, they could serve as biological markers for presence of these pathogens. The following volatile biomarkers were found for identification of specific strains: isovaleric acid and 2-methyl-butanal for Staphylococcus aureus; 1-undecene, 2,4-dimethyl-1-heptane, 2-butanone, 4-methyl-quinazoline, hydrogen cyanide, and methyl thiocyanide for Pseudomonas aeruginosa; and methanol, pentanol, ethyl acetate, and indole for Escherichia coli. Notably, several factors that may effect VOC production were not controlled for, including used culture media, bacterial growth phase, and genomic variation within bacterial strains. In conclusion, VOCs produced by bacteria may serve as biological markers for their presence. Goal-targeted studies should be performed to identify potential sets of volatile biological markers and evaluate the diagnostic accuracy of these markers in critically ill patients.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Structure, Function and Diversity of the Healthy Human Microbiome

          Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin, and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics, and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analyzed the largest cohort and set of distinct, clinically relevant body habitats to date. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families, and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology, and translational applications of the human microbiome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock*

            Critical Care Medicine, 34(6), 1589-1596
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              International study of the prevalence and outcomes of infection in intensive care units.

              Infection is a major cause of morbidity and mortality in intensive care units (ICUs) worldwide. However, relatively little information is available about the global epidemiology of such infections. To provide an up-to-date, international picture of the extent and patterns of infection in ICUs. The Extended Prevalence of Infection in Intensive Care (EPIC II) study, a 1-day, prospective, point prevalence study with follow-up conducted on May 8, 2007. Demographic, physiological, bacteriological, therapeutic, and outcome data were collected for 14,414 patients in 1265 participating ICUs from 75 countries on the study day. Analyses focused on the data from the 13,796 adult (>18 years) patients. On the day of the study, 7087 of 13,796 patients (51%) were considered infected; 9084 (71%) were receiving antibiotics. The infection was of respiratory origin in 4503 (64%), and microbiological culture results were positive in 4947 (70%) of the infected patients; 62% of the positive isolates were gram-negative organisms, 47% were gram-positive, and 19% were fungi. Patients who had longer ICU stays prior to the study day had higher rates of infection, especially infections due to resistant staphylococci, Acinetobacter, Pseudomonas species, and Candida species. The ICU mortality rate of infected patients was more than twice that of noninfected patients (25% [1688/6659] vs 11% [ 682/6352], respectively; P < .001), as was the hospital mortality rate (33% [2201/6659] vs 15% [ 942/6352], respectively; P < .001) (adjusted odds ratio for risk of hospital mortality, 1.51; 95% confidence interval, 1.36-1.68; P < .001). Infections are common in patients in contemporary ICUs, and risk of infection increases with duration of ICU stay. In this large cohort, infection was independently associated with an increased risk of hospital death.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                May 2013
                May 2013
                9 May 2013
                : 9
                : 5
                : e1003311
                Affiliations
                [1 ]Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
                [2 ]Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
                [3 ]Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
                International Centre for Genetic Engineering and Biotechnology, India
                Author notes

                The authors have declared that no competing interests exist.

                Article
                PPATHOGENS-D-12-02842
                10.1371/journal.ppat.1003311
                3649982
                23675295
                29b004f1-c4b7-4dfc-99a2-4fe423b7f1cd
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                Page count
                Pages: 8
                Funding
                LDJB is supported by a research grant (PhD Scholarship) of the Academic Medical Center ( http://www.amc.nl/web/Onderwijs/PhD/AMC-Scholarships/AMC-Scholarschip-winners.htm) and by the ESICM Young Investigator Award ( http://www.esicm.org/research/eccrn/awards-winners). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Review
                Biology
                Systems Biology
                Chemistry
                Analytical Chemistry
                Chemical Analysis
                Gas Analysis
                Medicine
                Diagnostic Medicine
                Infectious Diseases

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article