5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Whales, lifespan, phospholipids, and cataracts

      , ,
      Journal of Lipid Research
      American Society for Biochemistry & Molecular Biology (ASBMB)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          Causes and prevalence of visual impairment among adults in the United States.

          To estimate the cause-specific prevalence and distribution of blindness and low vision in the United States by age, race/ethnicity, and gender, and to estimate the change in these prevalence figures over the next 20 years. Summary prevalence estimates of blindness (both according to the US definition of < or =6/60 [< or =20/200] best-corrected visual acuity in the better-seeing eye and the World Health Organization standard of < 6/120 [< 20/400]) and low vision (< 6/12 [< 20/40] best-corrected vision in the better-seeing eye) were prepared separately for black, Hispanic, and white persons in 5-year age intervals starting at 40 years. The estimated prevalences were based on recent population-based studies in the United States, Australia, and Europe. These estimates were applied to 2000 US Census data, and to projected US population figures for 2020, to estimate the number of Americans with visual impairment. Cause-specific prevalences of blindness and low vision were also estimated for the different racial/ethnic groups. Based on demographics from the 2000 US Census, an estimated 937 000 (0.78%) Americans older than 40 years were blind (US definition). An additional 2.4 million Americans (1.98%) had low vision. The leading cause of blindness among white persons was age-related macular degeneration (54.4% of the cases), while among black persons, cataract and glaucoma accounted for more than 60% of blindness. Cataract was the leading cause of low vision, responsible for approximately 50% of bilateral vision worse than 6/12 (20/40) among white, black, and Hispanic persons. The number of blind persons in the US is projected to increase by 70% to 1.6 million by 2020, with a similar rise projected for low vision. Blindness or low vision affects approximately 1 in 28 Americans older than 40 years. The specific causes of visual impairment, and especially blindness, vary greatly by race/ethnicity. The prevalence of visual disabilities will increase markedly during the next 20 years, owing largely to the aging of the US population.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Trends in oxidative aging theories.

            The early observations on the rate-of-living theory by Max Rubner and the report by Gershman that oxygen free radicals exist in vivo culminated in the seminal proposal in the 1950s by Denham Harman that reactive oxygen species are a cause of aging (free radical theory of aging). The goal of this review is to analyze recent findings relevant in evaluating Harman's theory using experimental results as grouped by model organisms (i.e., invertebrate models and mice). In this regard, we have focused primarily on recent work involving genetic manipulations. Because the free radical theory of aging is not the only theorem proposed to explain the mechanism(s) involved in aging at the molecular level, we also discuss how this theory is related to other areas of research in biogerontology, specifically, telomere/cell senescence, genomic instability, and the mitochondrial hypothesis of aging. We also discuss where we think the free radical theory is headed. It is now possible to give at least a partial answer to the question whether oxidative stress determines life span as Harman posed so long ago. Based on studies to date, we argue that a tentative case for oxidative stress as a life-span determinant can be made in Drosophila melanogaster. Studies in mice argue for a role of oxidative stress in age-related disease, especially cancer; however, with regard to aging per se, the data either do not support or remain inconclusive on whether oxidative stress determines life span.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Age-related nuclear cataract-oxidation is the key.

              Age is by far the biggest risk factor for cataract, and it is sometimes assumed that cataract is simply an amplification of this aging process. This appears not to be the case, since the lens changes associated with aging and cataract are distinct. Oxidation is the hallmark of age-related nuclear (ARN) cataract. Loss of protein sulfhydryl groups, and the oxidation of methionine residues, are progressive and increase as the cataract worsens until >90% of cysteine and half the methionine residues are oxidised in the most advanced form. By contrast, there may be no significant oxidation of proteins in the centre of the lens with advancing age, even past age 80. The key factor in preventing oxidation seems to be the concentration of nuclear glutathione (GSH). Provided that nuclear GSH levels can be maintained above 2 mm, it appears that significant protein oxidation and posttranslational modification by reactive small molecules, such as ascorbate or UV filter degradation products, is not observed. Adequate coupling of the metabolically-active cortex, the source of antioxidants such as GSH, to the quiescent nucleus, is crucial especially since it would appear that the cortex remains viable in old lenses, and even possibly in ARN cataract lenses. Therefore it is vital to understand the reason for the onset of the lens barrier. This barrier, which becomes apparent in middle age, acts to impede the flow of small molecules between the cortex and the nucleus. The barrier, rather than nuclear compaction (which is not observed in human lenses), may contribute to the lowered concentration of GSH in the lens nucleus after middle age. By extending the residence time within the lens centre, the barrier also facilitates the decomposition of intrinsically unstable metabolites and may exacerbate the formation of H(2)O(2) in the nucleus. This hypothesis, which is based on the generation of reactive oxygen species and reactive molecules within the nucleus itself, shifts the focus away from theories for cataract that postulated a primary role for oxidants generated outside of the lens. Unfortunately, due to marked variability in the lenses of different species, there appears at present to be no ideal animal model system for studying human ARN cataract.
                Bookmark

                Author and article information

                Journal
                Journal of Lipid Research
                J. Lipid Res.
                American Society for Biochemistry & Molecular Biology (ASBMB)
                0022-2275
                1539-7262
                December 01 2017
                December 2017
                December 2017
                October 16 2017
                : 58
                : 12
                : 2289-2298
                Article
                10.1194/jlr.M079368
                29b5a34e-19d1-4a39-b93f-43b458835782
                © 2017
                History

                Comments

                Comment on this article