Blog
About

481
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The complexity of NF-κB signaling in inflammation and cancer

      1 , , 1

      Molecular Cancer

      BioMed Central

      NF-kappa B signaling, Cancer, Inflammation, Cooperativity, Crosstalk

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The NF-κB family of transcription factors has an essential role in inflammation and innate immunity. Furthermore, NF-κB is increasingly recognized as a crucial player in many steps of cancer initiation and progression. During these latter processes NF-κB cooperates with multiple other signaling molecules and pathways. Prominent nodes of crosstalk are mediated by other transcription factors such as STAT3 and p53 or the ETS related gene ERG. These transcription factors either directly interact with NF-κB subunits or affect NF-κB target genes. Crosstalk can also occur through different kinases, such as GSK3-β, p38, or PI3K, which modulate NF-κB transcriptional activity or affect upstream signaling pathways. Other classes of molecules that act as nodes of crosstalk are reactive oxygen species and miRNAs. In this review, we provide an overview of the most relevant modes of crosstalk and cooperativity between NF-κB and other signaling molecules during inflammation and cancer.

          Related collections

          Most cited references 166

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNAs: genomics, biogenesis, mechanism, and function.

           David Bartel (2004)
          MicroRNAs (miRNAs) are endogenous approximately 22 nt RNAs that can play important regulatory roles in animals and plants by targeting mRNAs for cleavage or translational repression. Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer-related inflammation.

            The mediators and cellular effectors of inflammation are important constituents of the local environment of tumours. In some types of cancer, inflammatory conditions are present before a malignant change occurs. Conversely, in other types of cancer, an oncogenic change induces an inflammatory microenvironment that promotes the development of tumours. Regardless of its origin, 'smouldering' inflammation in the tumour microenvironment has many tumour-promoting effects. It aids in the proliferation and survival of malignant cells, promotes angiogenesis and metastasis, subverts adaptive immune responses, and alters responses to hormones and chemotherapeutic agents. The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inflammation and cancer: back to Virchow?

              The response of the body to a cancer is not a unique mechanism but has many parallels with inflammation and wound healing. This article reviews the links between cancer and inflammation and discusses the implications of these links for cancer prevention and treatment. We suggest that the inflammatory cells and cytokines found in tumours are more likely to contribute to tumour growth, progression, and immunosuppression than they are to mount an effective host antitumour response. Moreover cancer susceptibility and severity may be associated with functional polymorphisms of inflammatory cytokine genes, and deletion or inhibition of inflammatory cytokines inhibits development of experimental cancer. If genetic damage is the "match that lights the fire" of cancer, some types of inflammation may provide the "fuel that feeds the flames". Over the past ten years information about the cytokine and chemokine network has led to development of a range of cytokine/chemokine antagonists targeted at inflammatory and allergic diseases. The first of these to enter the clinic, tumour necrosis factor antagonists, have shown encouraging efficacy. In this article we have provided a rationale for the use of cytokine and chemokine blockade, and further investigation of non-steroidal anti-inflammatory drugs, in the chemoprevention and treatment of malignant diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mol Cancer
                Mol. Cancer
                Molecular Cancer
                BioMed Central
                1476-4598
                2013
                2 August 2013
                : 12
                : 86
                Affiliations
                [1 ]Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
                Article
                1476-4598-12-86
                10.1186/1476-4598-12-86
                3750319
                23915189
                Copyright © 2013 Hoesel and Schmid; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Review

                Oncology & Radiotherapy

                nf-kappa b signaling, crosstalk, cooperativity, inflammation, cancer

                Comments

                Comment on this article