21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype

      ,
      Immunity
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Thy-1.1loSca-1hiLin-/lo population, representing 0.05% of C57BL/Ka-Thy-1.1 bone marrow, is highly enriched for hematopoietic stem cells and includes all multipotent progenitors in this mouse strain; however, the functional reconstituting activity of this fraction is heterogeneous. Only around 25% of clonal reconstitutions by cells from this population are long term; remaining clones yield transient multilineage reconstitutions. By fractionating based on lineage marker expression, the Thy-1.1loSca-1hiLin-/lo population has been resolved into three subpopulations: Lin-Mac-1-CD4-; Lin-Mac-1loCD4-; and Mac-1loCD4lo. Of these, only the Lin-Mac-1-CD4- population is highly enriched for long-term reconstituting hematopoietic stem cells. A comparison of transient and long-term multipotent progenitors indicates that long-term progenitors have less CFU-S activity, are equally radioprotective, and are less frequently in cell cycle. The ability to predict the longevity of reconstitution based on lineage marker expression indicates that reconstitution potential is deterministic, not stochastic.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: not found
          • Article: not found

          A direct measurement of the radiation sensitivity of normal mouse bone marrow cells.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neutrophil kinetics in man.

            A method has been developed for measuring neutrophil cellularity in normal human bone marrow, in which the neutrophil-erythroid ratio was determined from marrow sections and marrow normoblasts were estimated by the erythron iron turnover. Neutrophil maturational categories, defined by morphologic criteria, were supported by autoradiographs of marrow flashed-labeled with 3H-thymidine. Correction for multiple counting error was empirically derived by counting serial sections through cells of each maturational category. The normal neutrophil-erythroid ratio in 13 normal human subjects was 1.5 +/- 0.07. The mean number of normoblasts in the same subjects was estimated to be 5.07 +/- 0.84 X 10(9) cells/kg. Total marrow neutrophils (X 10(9) cells/kg) were 7.70 +/- 1.20, the postmitotic pool (metamyelocytes, bands, and segmented forms) was 5.59 +/- 0.90 and the mitotic pool (promyelocytes + myelocytes) was 2.11 +/- 0.36. Marrow neutrophil ("total") production has been determined from the number of neutrophils comprising the postmitotic marrow pool divided by their transit time Transit time was derived from the appearance in circulating neutrophils of injected 3H-thymidine. The postmitotic pool comprised 5.59 +/- 0.90 X 10(9) neutrophils/kg, and the transit time was 6.60 +/- 0.03 days. From these data marrow neutrophil production was calculated to be 0.85 X 10(9) cells/kg per day. Effective production, measured as the turnover of circulating neutrophils labeled with 3H-thymidine, was 0.87 +/- 0.13 X 10(9) cells/kg per day. This value correlated well with the calculation of marrow neutrophil production. A larger turnover of 1.62 +/- 0.46 X 10(9) cells/kg per day was obtained when diisopropylfluorophosphate-32P was used to label circulating neutrophils. Studies using isologous cells doubly labeled with 3H-thymidine and diisopropylfluorophosphate-32P demonstrated a lower recovery and shorter t1/2 of the 32P label.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Purification and characterization of mouse hematopoietic stem cells

                Bookmark

                Author and article information

                Journal
                Immunity
                Immunity
                Elsevier BV
                10747613
                November 1994
                November 1994
                : 1
                : 8
                : 661-673
                Article
                10.1016/1074-7613(94)90037-X
                7541305
                29d503a2-8d36-4601-8cac-9f840abe002c
                © 1994

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article