18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Gene transfer into inflamed glomeruli using macrophages transfected with adenovirus

      , , ,
      Gene Therapy
      Springer Nature America, Inc

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy.

          An important limitation that has emerged in the use of adenoviruses for gene therapy has been loss of recombinant gene expression that occurs concurrent with the development of pathology in the organ expressing the transgene. We have used liver-directed approaches to gene therapy in mice to study mechanisms that underlie the problems with transient expression and pathology that have characterized in vivo applications of first-generation recombinant adenoviruses (i.e., those deleted of E1a and E1b). Our data are consistent with the following hypothesis. Cells harboring the recombinant viral genome express the transgene as desired; however, low-level expression of viral genes also occurs. A virus-specific cellular immune response is stimulated that leads to destruction of the genetically modified hepatocytes, massive hepatitis, and repopulation of the liver with nontransgene-containing hepatocytes. These findings suggest approaches for improving recombinant adenoviruses that are based on further crippling the virus to limit expression of nondeleted viral genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase.

            Interferons (IFNs) induce antiviral activity in many cell types. The ability of IFN-gamma to inhibit replication of ectromelia, vaccinia, and herpes simplex-1 viruses in mouse macrophages correlated with the cells' production of nitric oxide (NO). Viral replication was restored in IFN-gamma-treated macrophages exposed to inhibitors of NO synthase. Conversely, epithelial cells with no detectable NO synthesis restricted viral replication when transfected with a complementary DNA encoding inducible NO synthase or treated with organic compounds that generate NO. In mice, an inhibitor of NO synthase converted resolving ectromelia virus infection into fulminant mousepox. Thus, induction of NO synthase can be necessary and sufficient for a substantial antiviral effect of IFN-gamma.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MIP-1alpha as a critical macrophage chemoattractant in murine wound repair.

              At sites of injury, macrophages secrete growth factors and proteins that promote tissue repair. While this central role of the macrophage has been well studied, the specific stimuli that recruit macrophages into sites of injury are not well understood. This study examines the role of macrophage inflammatory protein 1alpha (MIP-1alpha), a C-C chemokine with monocyte chemoattractant capability, in excisional wound repair. Both MIP-1alpha mRNA and protein were detectable in murine wounds from 12 h through 5 d after injury. MIP-1alpha protein levels peaked 3 d after injury, coinciding with maximum macrophage infiltration. The contribution of MIP-1alpha to monocyte recruitment into wounds was assessed by treating mice with neutralizing anti-MIP-1alpha antiserum before injury. Wounds of mice treated with anti-MIP-1alpha antiserum had significantly fewer macrophages than control (41% decrease, P < 0. 01). This decrease in wound macrophages was paralleled by decreased angiogenic activity and collagen synthesis. When tested in the corneal micropocket assay, wound homogenates from mice treated with anti-MIP-1alpha contained significantly less angiogenic activity than control wound homogenates (27% positive for angiogenic activity versus 91% positive in the control group, P < 0.01). Collagen production was also significantly reduced in the wounds from anti-MIP-1alpha treated animals (29% decrease, P < 0.05). The results demonstrate that MIP-1alpha plays a critical role in macrophage recruitment into wounds, and suggest that appropriate tissue repair is dependent upon this recruitment.
                Bookmark

                Author and article information

                Journal
                Gene Therapy
                Gene Ther
                Springer Nature America, Inc
                0969-7128
                1476-5462
                February 2000
                February 17 2000
                February 2000
                : 7
                : 3
                : 263-270
                Article
                10.1038/sj.gt.3301060
                29d5fd8e-bc15-4bfe-af8c-04dd4bcb8678
                © 2000

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article