15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tpl2/AP-1 enhances murine gammaherpesvirus 68 lytic replication.

      Journal of Biology
      Animals, Base Sequence, Cell Line, Cercopithecus aethiops, Cricetinae, DNA, Viral, genetics, Genes, Viral, Host-Pathogen Interactions, physiology, Humans, Immediate-Early Proteins, MAP Kinase Kinase Kinases, antagonists & inhibitors, Mice, Models, Biological, Promoter Regions, Genetic, Proto-Oncogene Proteins, Recombinant Proteins, metabolism, Rhadinovirus, Signal Transduction, Trans-Activators, Transcription Factor AP-1, Vero Cells, Virus Replication

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          How cellular factors regulate gammaherpesvirus lytic replication is not well understood. Here, through functional screening of a cellular kinase expression library, we identified mitogen-activated protein kinase kinase kinase 8 (MAP3K8/Tpl2) as a positive regulator of murine gammaherpesvirus 68 (MHV-68 or gammaHV-68) lytic gene expression and replication. Tpl2 enhances MHV-68 lytic replication by upregulating lytic gene expression and promoter activities of viral lytic genes, including RTA and open reading frame 57 (ORF57). By screening a cellular transcription factor library, we identified the Fos AP-1 transcription factor as a downstream factor that is both necessary and sufficient for mediating the enhancement of MHV-68 lytic replication by Tpl2. In addition, Tpl2 stimulates the promoter activities of key viral lytic genes, including RTA and ORF57, in an AP-1-dependent manner. We identified an AP-1-responsive element on the MHV-68 RTA promoter as the cis element mediating the upregulation of RTA promoter activity by Tpl2. MHV-68 lytic infection upregulates Fos expression, AP-1 activity, and RTA promoter activity in a Tpl2-dependent manner. We constructed a mutant MHV-68 virus that abolished this AP-1-responsive element. This mutant virus exhibited attenuated lytic replication kinetics, indicative of a critical role of this AP-1-responsive element during lytic replication. Moreover, Tpl2 knockdown inhibited the lytic replication of wild-type MHV-68 (MHV-68-WT) but not that of the MHV-68 mutant virus, indicating that endogenous Tpl2 promotes efficient virus lytic replication through AP-1-dependent upregulation of RTA expression. In summary, through tandem functional screens, we identified the Tpl2/AP-1 signaling transduction pathway as a positive regulator of MHV-68 lytic replication.

          Related collections

          Author and article information

          Comments

          Comment on this article