13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      alpha-Actinin interacts with rapsyn in agrin-stimulated AChR clustering

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          AChR is concentrated at the postjunctional membrane at the neuromuscular junction. However, the underlying mechanism is unclear. We show that α-actinin, a protein known to cross-link F-actin, interacts with rapsyn, a scaffold protein essential for neuromuscular junction formation. α-Actinin, rapsyn, and surface AChR form a ternary complex. Moreover, the rapsyn-α-actinin interaction is increased by agrin, a factor known to stimulate AChR clustering. Downregulation of α-actinin expression inhibits agrin-mediated AChR clustering. Furthermore, the rapsyn-α-actinin interaction can be disrupted by inhibiting Abl and by cholinergic stimulation. Together these results indicate a role for α-actinin in AChR clustering.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: not found
          • Article: not found

          Induction, assembly, maturation and maintenance of a postsynaptic apparatus.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lrp4 is a receptor for Agrin and forms a complex with MuSK.

            Neuromuscular synapse formation requires a complex exchange of signals between motor neurons and skeletal muscle fibers, leading to the accumulation of postsynaptic proteins, including acetylcholine receptors in the muscle membrane and specialized release sites, or active zones in the presynaptic nerve terminal. MuSK, a receptor tyrosine kinase that is expressed in skeletal muscle, and Agrin, a motor neuron-derived ligand that stimulates MuSK phosphorylation, play critical roles in synaptic differentiation, as synapses do not form in their absence, and mutations in MuSK or downstream effectors are a major cause of a group of neuromuscular disorders, termed congenital myasthenic syndromes (CMS). How Agrin activates MuSK and stimulates synaptic differentiation is not known and remains a fundamental gap in our understanding of signaling at neuromuscular synapses. Here, we report that Lrp4, a member of the LDLR family, is a receptor for Agrin, forms a complex with MuSK, and mediates MuSK activation by Agrin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo.

              Formation of neuromuscular synapses requires a series of inductive interactions between growing motor axons and differentiating muscle cells, culminating in the precise juxtaposition of a highly specialized nerve terminal with a complex molecular structure on the postsynaptic muscle surface. The receptors and signaling pathways mediating these inductive interactions are not known. We have generated mice with a targeted disruption of the gene encoding MuSK, a receptor tyrosine kinase selectively localized to the postsynaptic muscle surface. Neuromuscular synapses do not form in these mice, suggesting a failure in the induction of synapse formation. Together with the results of an accompanying manuscript, our findings indicate that MuSK responds to a critical nerve-derived signal (agrin), and in turn activates signaling cascades responsible for all aspects of synapse formation, including organization of the postsynaptic membrane, synapse-specific transcription, and presynaptic differentiation.
                Bookmark

                Author and article information

                Journal
                Mol Brain
                Molecular Brain
                BioMed Central
                1756-6606
                2008
                3 December 2008
                : 1
                : 18
                Affiliations
                [1 ]Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, and Department of Neurobiology, Medical College of Georgia, Augusta, Georgia 30912, USA
                [2 ]Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
                Article
                1756-6606-1-18
                10.1186/1756-6606-1-18
                2621155
                19055765
                29dd0f76-876d-4568-afeb-43f6fadd1bd8
                Copyright © 2008 Dobbins et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 November 2008
                : 3 December 2008
                Categories
                Research

                Neurosciences
                Neurosciences

                Comments

                Comment on this article