16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An integrative approach to the anatomy of Syllis gracilis Grube, 1840 (Annelida) using micro-computed X-ray tomography

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The overall anatomy of the genus Syllis (Annelida: Syllidae) has been largely studied; however, an integrative approach considering different anatomical techniques has never been considered. Here, we use micro-computed X-ray tomography (micro-CT) to examine the internal anatomy of Syllis gracilis Grube, 1840, along with other widely available techniques.

          Methods

          We studied the anatomy of the marine annelid S. gracilis through an integrative approach, including micro-CT along with stereo and light compound microscopy (STM, LCM), scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and histological sectioning (HIS). In this manner, we evaluated the applicability of micro-CT for the examination of annelid anatomy by testing whether the images obtained make it possible to visualize the main body structures, in comparison with other current techniques, of the various elements of its internal anatomy.

          Results

          Overall external and internal body elements are clearly shown by the integrative use of all techniques, thus overcoming the limitations of each when studied separately.Any given method shows disparate results, depending on the body part considered. For instance, micro-CT provided good images of the external anatomy, including relevant characters such as the shape, length and number of articles of dorsal parapodial cirri. However, it is especially useful for the examination of internal anatomy, thus allowing for 3D visualization of the natural spatial arrangement of the different organs. The features best visualized are those of higher tissue density (i.e., body musculature, anterior parts of the digestive tract), particularly in 3D images of unstained specimens, whereas less electrodense tissues (i.e., the peritoneal lining of septa and nervous system) are less clearly visualized. The use of iodine stain with micro-CT has shown advantages against non-staining for the adequate observation of delicate elements of low density, such as the segmental organs, the connective between the ganglia, the ventral nerve cord and segmental nerves.

          Discussion

          Main external anatomical elements of S. gracilis are well shown with micro-CT, but images show lesser optical resolution and contrast when compared to micrographs provided by SEM and CLSM, especially for fine structural features of chaetae. Comparison of micro-CT and HIS images revealed the utility and reliability of the former to show the presence, shape and spatial disposition of most internal body organs; the resolution of micro-CT images at a cellular level is, however, much lower than that of HIS, which makes both techniques complementary.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Micro-computed tomography: Introducing new dimensions to taxonomy

          Abstract Continuous improvements in the resolution of three-dimensional imaging have led to an increased application of these techniques in conventional taxonomic research in recent years. Coupled with an ever increasing research effort in cybertaxonomy, three-dimensional imaging could give a boost to the development of virtual specimen collections, allowing rapid and simultaneous access to accurate virtual representations of type material. This paper explores the potential of micro-computed tomography (X-ray micro-tomography), a non-destructive three-dimensional imaging technique based on mapping X-ray attenuation in the scanned object, for supporting research in systematics and taxonomy. The subsequent use of these data as virtual type material, so-called “cybertypes”, and the creation of virtual collections lie at the core of this potential. Sample preparation, image acquisition, data processing and presentation of results are demonstrated using polychaetes (bristle worms), a representative taxon of macro-invertebrates, as a study object. Effects of the technique on the morphological, anatomical and molecular identity of the specimens are investigated. The paper evaluates the results and discusses the potential and the limitations of the technique for creating cybertypes. It also discusses the challenges that the community might face to establish virtual collections. Potential future applications of three-dimensional information in taxonomic research are outlined, including an outlook to new ways of producing, disseminating and publishing taxonomic information.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Morphology of the nervous system of Polychaeta (Annelida)

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Potential and limitations of X-Ray micro-computed tomography in arthropod neuroanatomy: A methodological and comparative survey

              Classical histology or immunohistochemistry combined with fluorescence or confocal laser scanning microscopy are common techniques in arthropod neuroanatomy, and these methods often require time-consuming and difficult dissections and sample preparations. Moreover, these methods are prone to artifacts due to compression and distortion of tissues, which often result in information loss and especially affect the spatial relationships of the examined parts of the nervous system in their natural anatomical context. Noninvasive approaches such as X-ray micro-computed tomography (micro-CT) can overcome such limitations and have been shown to be a valuable tool for understanding and visualizing internal anatomy and structural complexity. Nevertheless, knowledge about the potential of this method for analyzing the anatomy and organization of nervous systems, especially of taxa with smaller body size (e.g., many arthropods), is limited. This study set out to analyze the brains of selected arthropods with micro-CT, and to compare these results with available histological and immunohistochemical data. Specifically, we explored the influence of different sample preparation procedures. Our study shows that micro-CT is highly suitable for analyzing arthropod neuroarchitecture in situ and allows specific neuropils to be distinguished within the brain to extract quantitative data such as neuropil volumes. Moreover, data acquisition is considerably faster compared with many classical histological techniques. Thus, we conclude that micro-CT is highly suitable for targeting neuroanatomy, as it reduces the risk of artifacts and is faster than classical techniques. J. Comp. Neurol. 523:1281–1295, 2015. © 2015 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                peerj
                peerj
                PeerJ
                PeerJ Inc. (San Diego, USA )
                2167-8359
                8 July 2019
                2019
                : 7
                : e7251
                Affiliations
                [1 ]Departamento de Bioloxía, Universidade da Coruña , A Coruña, Spain
                [2 ]Estación de Bioloxía Mariña da Graña, Universidade de Santiago de Compostela , Ferrol, Spain
                [3 ]Departamento de Biología, Universidad Autónoma de Madrid , Madrid, Spain
                Article
                7251
                10.7717/peerj.7251
                6622173
                29e5fa3a-00e7-424f-9ff2-f2c3b67b7e4b
                ©2019 Parapar et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 22 October 2018
                : 13 May 2019
                Funding
                Funded by: Project Fauna Ibérica X: Polychaeta VI: Palpata-Canalipalpata I (CGL2014-53332-C5-3-P) from the Ministerio de Economía Industria y Competitividad (Spain)
                This work was supported by the project Fauna Ibérica X: Polychaeta VI: Palpata-Canalipalpata I (CGL2014-53332-C5-3-P) from the Ministerio de Economía Industria y Competitividad (Spain). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Taxonomy
                Zoology
                Histology

                annelida,syllidae,micro-ct,histological sectioning,scanning electron microscopy,anatomy

                Comments

                Comment on this article