17
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bacterial diversity and community composition from seasurface to subseafloor

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We investigated compositional relationships between bacterial communities in the water column and those in deep-sea sediment at three environmentally distinct Pacific sites (two in the Equatorial Pacific and one in the North Pacific Gyre). Through pyrosequencing of the v4–v6 hypervariable regions of the 16S ribosomal RNA gene, we characterized 450 104 pyrotags representing 29 814 operational taxonomic units (OTUs, 97% similarity). Hierarchical clustering and non-metric multidimensional scaling partition the samples into four broad groups, regardless of geographic location: a photic-zone community, a subphotic community, a shallow sedimentary community and a subseafloor sedimentary community (⩾1.5 meters below seafloor). Abundance-weighted community compositions of water-column samples exhibit a similar trend with depth at all sites, with successive epipelagic, mesopelagic, bathypelagic and abyssopelagic communities. Taxonomic richness is generally highest in the water-column O 2 minimum zone and lowest in the subseafloor sediment. OTUs represented by abundant tags in the subseafloor sediment are often present but represented by few tags in the water column, and represented by moderately abundant tags in the shallow sediment. In contrast, OTUs represented by abundant tags in the water are generally absent from the subseafloor sediment. These results are consistent with (i) dispersal of marine sedimentary bacteria via the ocean, and (ii) selection of the subseafloor sedimentary community from within the community present in shallow sediment.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: not found
          • Article: not found

          QIIME allows analysis of high-throughput community sequencing data.

            Bookmark
            • Record: found
            • Abstract: not found
            • Book: not found

            ggplot2

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbial biogeography: putting microorganisms on the map.

              We review the biogeography of microorganisms in light of the biogeography of macroorganisms. A large body of research supports the idea that free-living microbial taxa exhibit biogeographic patterns. Current evidence confirms that, as proposed by the Baas-Becking hypothesis, 'the environment selects' and is, in part, responsible for spatial variation in microbial diversity. However, recent studies also dispute the idea that 'everything is everywhere'. We also consider how the processes that generate and maintain biogeographic patterns in macroorganisms could operate in the microbial world.
                Bookmark

                Author and article information

                Journal
                ISME J
                ISME J
                The ISME Journal
                Nature Publishing Group
                1751-7362
                1751-7370
                April 2016
                02 October 2015
                1 April 2016
                : 10
                : 4
                : 979-989
                Affiliations
                [1 ]Department of Microbiology, The Forsyth Institute , Cambridge, MA, USA
                [2 ]Harvard School of Dental Medicine , Boston, MA, USA
                [3 ]Graduate School of Oceanography, University of Rhode Island, Narragansett Bay Campus , Narragansett, RI, USA
                [4 ]Department of Environmental Sciences, Roger Williams University , Bristol, RI, USA
                [5 ]Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory , Woods Hole, MA, USA
                Author notes
                [* ]The Forsyth Institute , 245 First Street, Cambridge, MA 02145, USA. E-mail: ewalsh@ 123456forsyth.org
                Article
                ismej2015175
                10.1038/ismej.2015.175
                4796937
                26430855
                29f0a46a-30c4-4aca-8230-072ecf467634
                Copyright © 2016 International Society for Microbial Ecology

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

                History
                : 09 March 2015
                : 10 August 2015
                : 13 August 2015
                Categories
                Original Article

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article