70
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer’s-like pathology

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microglial proliferation and activation is a hallmark of Alzheimer’s disease. Olmos-Alonso et al. show that microglial proliferation in Alzheimer’s disease tissue correlates with overactivation of the colony-stimulating factor 1 receptor (CSF1R) pathway. CSF1R blockade arrests microglial proliferation and activation in a mouse model of Alzheimer-like pathology and slows disease progression.

          Abstract

          Microglial proliferation and activation is a hallmark of Alzheimer’s disease. Olmos-Alonso et al. show that microglial proliferation in Alzheimer’s disease tissue correlates with overactivation of the colony-stimulating factor 1 receptor (CSF1R) pathway. CSF1R blockade arrests microglial proliferation and activation in a mouse model of Alzheimer-like pathology and slows disease progression.

          Abstract

          The proliferation and activation of microglial cells is a hallmark of several neurodegenerative conditions. This mechanism is regulated by the activation of the colony-stimulating factor 1 receptor (CSF1R), thus providing a target that may prevent the progression of conditions such as Alzheimer’s disease. However, the study of microglial proliferation in Alzheimer’s disease and validation of the efficacy of CSF1R-inhibiting strategies have not yet been reported. In this study we found increased proliferation of microglial cells in human Alzheimer’s disease, in line with an increased upregulation of the CSF1R-dependent pro-mitogenic cascade, correlating with disease severity. Using a transgenic model of Alzheimer’s-like pathology (APPswe, PSEN1dE9; APP/PS1 mice) we define a CSF1R-dependent progressive increase in microglial proliferation, in the proximity of amyloid-β plaques. Prolonged inhibition of CSF1R in APP/PS1 mice by an orally available tyrosine kinase inhibitor (GW2580) resulted in the blockade of microglial proliferation and the shifting of the microglial inflammatory profile to an anti-inflammatory phenotype. Pharmacological targeting of CSF1R in APP/PS1 mice resulted in an improved performance in memory and behavioural tasks and a prevention of synaptic degeneration, although these changes were not correlated with a change in the number of amyloid-β plaques. Our results provide the first proof of the efficacy of CSF1R inhibition in models of Alzheimer’s disease, and validate the application of a therapeutic strategy aimed at modifying CSF1R activation as a promising approach to tackle microglial activation and the progression of Alzheimer’s disease.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Inflammation and Alzheimer's disease.

          Inflammation clearly occurs in pathologically vulnerable regions of the Alzheimer's disease (AD) brain, and it does so with the full complexity of local peripheral inflammatory responses. In the periphery, degenerating tissue and the deposition of highly insoluble abnormal materials are classical stimulants of inflammation. Likewise, in the AD brain damaged neurons and neurites and highly insoluble amyloid beta peptide deposits and neurofibrillary tangles provide obvious stimuli for inflammation. Because these stimuli are discrete, microlocalized, and present from early preclinical to terminal stages of AD, local upregulation of complement, cytokines, acute phase reactants, and other inflammatory mediators is also discrete, microlocalized, and chronic. Cumulated over many years, direct and bystander damage from AD inflammatory mechanisms is likely to significantly exacerbate the very pathogenic processes that gave rise to it. Thus, animal models and clinical studies, although still in their infancy, strongly suggest that AD inflammation significantly contributes to AD pathogenesis. By better understanding AD inflammatory and immunoregulatory processes, it should be possible to develop anti-inflammatory approaches that may not cure AD but will likely help slow the progression or delay the onset of this devastating disorder.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling.

            Macrophage-colony stimulating factor (CSF-1) signaling through its receptor (CSF-1R) promotes the differentiation of myeloid progenitors into heterogeneous populations of monocytes, macrophages, dendritic cells, and bone-resorbing osteoclasts. In the periphery, CSF-1 regulates the migration, proliferation, function, and survival of macrophages, which function at multiple levels within the innate and adaptive immune systems. Macrophage populations elicited by CSF-1 are associated with, and exacerbate, a broad spectrum of pathologies, including cancer, inflammation, and bone disease. Conversely, macrophages can also contribute to immunosuppression, disease resolution, and tissue repair. Recombinant CSF-1, antibodies against the ligand and the receptor, and specific inhibitors of CSF-1R kinase activity have been each been tested in a range of animal models and in some cases, in patients. This review examines the potential clinical uses of modulators of the CSF-1/CSF-1R system. We conclude that CSF-1 promotes a resident-type macrophage phenotype. As a treatment, CSF-1 has therapeutic potential in tissue repair. Conversely, inhibition of CSF-1R is unlikely to be effective in inflammatory disease but may have utility in cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells.

              Langerhans cells (LCs) are a specialized subset of dendritic cells (DCs) that populate the epidermal layer of the skin. Langerin is a lectin that serves as a valuable marker for LCs in mice and humans. In recent years, new mouse models have led to the identification of other langerin(+) DC subsets that are not present in the epidermis, including a subset of DCs that is found in most non-lymphoid tissues. In this Review we describe new developments in the understanding of the biology of LCs and other langerin(+) DCs and discuss the challenges that remain in identifying the role of different DC subsets in tissue immunity.
                Bookmark

                Author and article information

                Journal
                Brain
                Brain
                brainj
                brain
                Brain
                Oxford University Press
                0006-8950
                1460-2156
                March 2016
                08 January 2016
                08 January 2016
                : 139
                : 3
                : 891-907
                Affiliations
                1 Centre for Biological Sciences, University of Southampton, Southampton, UK
                2 Institute for Life Sciences, University of Southampton, Southampton, UK
                3 Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ, UK
                Author notes
                Correspondence to: Diego Gomez-Nicola Ph.D., Centre for Biological Sciences, University of Southampton, South Lab and Path Block, Mail Point 840 LD80C, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK E-mail: d.gomez-nicola@ 123456soton.ac.uk

                *These authors contributed equally to this work.

                Article
                awv379
                10.1093/brain/awv379
                4766375
                26747862
                29f3ac21-2afb-46ca-a9b4-ba197d8a92ad
                © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 July 2015
                : 12 October 2015
                : 29 October 2015
                Page count
                Pages: 17
                Categories
                Original Articles
                1060

                Neurosciences
                alzheimer’s disease,microglia,gliosis,neurodegeneration,inflammation
                Neurosciences
                alzheimer’s disease, microglia, gliosis, neurodegeneration, inflammation

                Comments

                Comment on this article