5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      CONSTITUTIVELY PHOTOMORPHOGENIC1 promotes ABA‐mediated inhibition of post‐germination seedling establishment

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor.

          The Arabidopsis abscisic acid (ABA)-insensitive abi5 mutants have pleiotropic defects in ABA response, including decreased sensitivity to ABA inhibition of germination and altered expression of some ABA-regulated genes. We isolated the ABI5 gene by using a positional cloning approach and found that it encodes a member of the basic leucine zipper transcription factor family. The previously characterized abi5-1 allele encodes a protein that lacks the DNA binding and dimerization domains required for ABI5 function. Analyses of ABI5 expression provide evidence for ABA regulation, cross-regulation by other ABI genes, and possibly autoregulation. Comparison of seed and ABA-inducible vegetative gene expression in wild-type and abi5-1 plants indicates that ABI5 regulates a subset of late embryogenesis-abundant genes during both developmental stages.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination.

            Seed plants have evolved to maintain the dormancy of freshly matured seeds until the appropriate time for germination. Seed dormancy and germination are distinct physiological processes, and the transition from dormancy to germination is not only a critical developmental step in the life cycle of plants but is also important for agricultural production. These processes are precisely regulated by diverse endogenous hormones and environmental cues. Although ABA (abscisic acid) and GAs (gibberellins) are known to be the primary phytohormones that antagonistically regulate seed dormancy, recent findings demonstrate that another phytohormone, auxin, is also critical for inducing and maintaining seed dormancy, and therefore might act as a key protector of seed dormancy. In this review, we summarize our current understanding of the sophisticated molecular networks involving the critical roles of phytohormones in regulating seed dormancy and germination, in which AP2-domain-containing transcription factors play key roles. We also discuss the interactions (crosstalk) of diverse hormonal signals in seed dormancy and germination, focusing on the ABA/GA balance that constitutes the central node.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeted destabilization of HY5 during light-regulated development of Arabidopsis.

              Arabidopsis seedlings display contrasting developmental patterns depending on the ambient light. Seedlings grown in the light develop photomorphogenically, characterized by short hypocotyls and expanded green cotyledons. In contrast, seedlings grown in darkness become etiolated, with elongated hypocotyls and dosed cotyledons on an apical hook. Light signals, perceived by multiple photoreceptors and transduced to downstream regulators, dictate the extent of photomorphogenic development in a quantitative manner. Two key downstream components, COP1 and HY5, act antagonistically in regulating seedling development. HY5 is a bZIP transcription factor that binds directly to the promoters of light-inducible genes, promoting their expression and photomorphogenic development. COP1 is a RING-finger protein with WD-40 repeats whose nuclear abundance is negatively regulated by light. COP1 interacts directly with HY5 in the nucleus to regulate its activity negatively. Here we show that the abundance of HY5 is directly correlated with the extent of photomorphogenic development, and that the COP1-HY5 interaction may specifically target HY5 for proteasome-mediated degradation in the nucleus.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                The Plant Journal
                Plant J
                Wiley
                0960-7412
                1365-313X
                July 2020
                June 17 2020
                July 2020
                : 103
                : 2
                : 481-496
                Affiliations
                [1 ]Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Bhopal 462066 India
                [2 ]Institute of Biology/Applied Genetics Dahlem Centre of Plant Sciences (DCPS) Freie Univeristät Berlin Albrecht‐Thaer‐Weg 6 Berlin D‐14195 Germany
                Article
                10.1111/tpj.14844
                32436306
                29f787f3-60bc-43e9-b55b-c94b802af2b7
                © 2020

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article