21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Alterations Induced by Bangerter Filters on the Visual Field: A Frequency Doubling Technology and Standard Automated Perimetry Study

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose. To investigate the effects of Bangerter filters on the visual field in healthy and in amblyopic patients. Materials and Methods. Fifteen normal adults and fifteen anisometropic amblyopia patients were analysed with standard automated perimetry (SAP) and frequency doubling technology (FDT) at baseline and with filters 0.8 and 0.1. Results. With 0.1 filter in SAP there was an increase of MD compared with controls (−10.24 ± 1.09 dB) in either the amblyopic (−11.34 ± 2.06 dB; P < 0.050) or sound eyes (−11.34 ± 1.66 dB; P < 0.030). With filters 0.8 the PSD was increased in the amblyopic eyes (2.09 ± 0.70 dB; P < 0.007) and in the sound eyes (1.92 ± 0.29 dB; P < 0.004) compared with controls. The FDT-PSD values in the control group were increased with the interposition of the filters compared to baseline (0.8; P < 0.0004 and 0.1; P < 0.0010). We did not find significant differences of the baseline PSD between amblyopic eyes (3.80 ± 2.21 dB) and the sound eyes (4.33 ± 1.31 dB) and when comparing the filters 0.8 (4.55 ± 1.50 versus 4.53 ± 1.76 dB) and 0.1 (4.66 ± 1.80 versus 5.10 ± 2.04 dB). Conclusions. The use of Bangerter filters leads to a reduction of the functionality of the magno- and parvocellular pathway.

          Related collections

          Most cited references 41

          • Record: found
          • Abstract: found
          • Article: not found

          Optical coherence tomography of the human retina.

          To demonstrate optical coherence tomography for high-resolution, noninvasive imaging of the human retina. Optical coherence tomography is a new imaging technique analogous to ultrasound B scan that can provide cross-sectional images of the retina with micrometer-scale resolution. Survey optical coherence tomographic examination of the retina, including the macula and optic nerve head in normal human subjects. Research laboratory. Convenience sample of normal human subjects. Correlation of optical coherence retinal tomographs with known normal retinal anatomy. Optical coherence tomographs can discriminate the cross-sectional morphologic features of the fovea and optic disc, the layered structure of the retina, and normal anatomic variations in retinal and retinal nerve fiber layer thicknesses with 10-microns depth resolution. Optical coherence tomography is a potentially useful technique for high depth resolution, cross-sectional examination of the fundus.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Functional specialization in the lower and upper visual fields in humans: Its ecological origins and neurophysiological implications

             Fred Previc (1990)
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Implications of sustained and transient channels for theories of visual pattern masking, saccadic suppression, and information processing.

                Bookmark

                Author and article information

                Journal
                J Ophthalmol
                J Ophthalmol
                JOPH
                Journal of Ophthalmology
                Hindawi Publishing Corporation
                2090-004X
                2090-0058
                2015
                20 January 2015
                : 2015
                Affiliations
                Department of Specialized, Diagnostic and Experimental Medicine, Ophthalmology Service, University of Bologna, 40100 Bologna, Italy
                Author notes

                Academic Editor: Paolo Fogagnolo

                Article
                10.1155/2015/909848
                4320864
                Copyright © 2015 Costantino Schiavi et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Clinical Study

                Ophthalmology & Optometry

                Comments

                Comment on this article