6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Amnesia for context fear is caused by widespread disruption of hippocampal activity

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          The medial temporal lobe.

          The medial temporal lobe includes a system of anatomically related structures that are essential for declarative memory (conscious memory for facts and events). The system consists of the hippocampal region (CA fields, dentate gyrus, and subicular complex) and the adjacent perirhinal, entorhinal, and parahippocampal cortices. Here, we review findings from humans, monkeys, and rodents that illuminate the function of these structures. Our analysis draws on studies of human memory impairment and animal models of memory impairment, as well as neurophysiological and neuroimaging data, to show that this system (a) is principally concerned with memory, (b) operates with neocortex to establish and maintain long-term memory, and (c) ultimately, through a process of consolidation, becomes independent of long-term memory, though questions remain about the role of perirhinal and parahippocampal cortices in this process and about spatial memory in rodents. Data from neurophysiology, neuroimaging, and neuroanatomy point to a division of labor within the medial temporal lobe. However, the available data do not support simple dichotomies between the functions of the hippocampus and the adjacent medial temporal cortex, such as associative versus nonassociative memory, episodic versus semantic memory, and recollection versus familiarity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease.

            Neural network dysfunction may play an important role in Alzheimer's disease (AD). Neuronal circuits vulnerable to AD are also affected in human amyloid precursor protein (hAPP) transgenic mice. hAPP mice with high levels of amyloid-beta peptides in the brain develop AD-like abnormalities, including cognitive deficits and depletions of calcium-related proteins in the dentate gyrus, a region critically involved in learning and memory. Here, we report that hAPP mice have spontaneous nonconvulsive seizure activity in cortical and hippocampal networks, which is associated with GABAergic sprouting, enhanced synaptic inhibition, and synaptic plasticity deficits in the dentate gyrus. Many Abeta-induced neuronal alterations could be simulated in nontransgenic mice by excitotoxin challenge and prevented in hAPP mice by blocking overexcitation. Aberrant increases in network excitability and compensatory inhibitory mechanisms in the hippocampus may contribute to Abeta-induced neurological deficits in hAPP mice and, possibly, also in humans with AD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The organization of recent and remote memories.

              A fundamental question in memory research is how our brains can form enduring memories. In humans, memories of everyday life depend initially on the medial temporal lobe system, including the hippocampus. As these memories mature, they are thought to become increasingly dependent on other brain regions such as the cortex. Little is understood about how new memories in the hippocampus are transformed into remote memories in cortical networks. However, recent studies have begun to shed light on how remote memories are organized in the cortex, and the molecular and cellular events that underlie their consolidation.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Neurobiology of Learning and Memory
                Neurobiology of Learning and Memory
                Elsevier BV
                10747427
                November 2020
                November 2020
                : 175
                : 107295
                Article
                10.1016/j.nlm.2020.107295
                32822864
                2a092fc0-13d0-4028-996b-21bb4a44df52
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article