10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Monocytic Tissue Transglutaminase in a Rat Model for Reversible Acute Rejection and Chronic Renal Allograft Injury

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acute rejection is a major risk factor for chronic allograft injury (CAI). Blood leukocytes interacting with allograft endothelial cells during acute rejection were suggested to contribute to the still enigmatic pathogenesis of CAI. We hypothesize that tissue transglutaminase (Tgm2), a multifunctional protein and established marker of M2 macrophages, is involved in acute and chronic graft rejection. We focus on leukocytes accumulating in blood vessels of rat renal allografts (Fischer-344 to Lewis), an established model for reversible acute rejection and CAI. Monocytes in graft blood vessels overexpress Tgm2 when acute rejection peaks on day 9 after transplantation. Concomitantly, caspase-3 is activated, suggesting that Tgm2 expression is linked to apoptosis. After resolution of acute rejection on day 42, leukocytic Tgm2 levels are lower and activated caspase-3 does not differ among isografts and allografts. Cystamine was applied for 4 weeks after transplantation to inhibit extracellular transglutaminase activity, which did, however, not reduce CAI in the long run. In conclusion, this is the first report on Tgm2 expression by monocytes in vivo. Tgm2 may be involved in leukocytic apoptosis and thus in reversion of acute rejection. However, our data do not support a role of extracellular transglutaminase activity as a factor triggering CAI during self-limiting acute rejection.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Transglutaminases: crosslinking enzymes with pleiotropic functions.

          Blood coagulation, skin-barrier formation, hardening of the fertilization envelope, extracellular-matrix assembly and other important biological processes are dependent on the rapid generation of covalent crosslinks between proteins. These reactions--which are catalysed by transglutaminases--endow the resulting supramolecular structure with extra rigidity and resistance against proteolytic degradation. Some transglutaminases function as molecular switches in cytoskeletal scaffolding and modulate protein-protein interactions. Having knowledge of these enzymes is essential for understanding the aetiologies of diverse hereditary diseases of the blood and skin, and various autoimmune, inflammatory and degenerative conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tissue transglutaminase links TGF-β, epithelial to mesenchymal transition and a stem cell phenotype in ovarian cancer.

            Tissue transglutaminase (TG2), an enzyme involved in cell proliferation, differentiation and apoptosis is overexpressed in ovarian carcinomas, where it modulates epithelial-to-mesenchymal transition (EMT) and promotes metastasis. Its regulation in ovarian cancer (OC) remains unexplored. Here, we show that transforming growth factor (TGF)-β, a cytokine involved in tumor dissemination is abundantly secreted in the OC microenvironment and induces TG2 expression and enzymatic activity. This is mediated at transcriptional level by SMADs and by TGF-β-activated kinase 1-mediated activation of the nuclear factor-κB complex. TGF-β-stimulated OC cells aggregate as spheroids, which enable peritoneal dissemination. We show that TGF-β-induced TG2 regulates EMT, formation of spheroids and OC metastasis. TG2 knock-down in OC cells decreases the number of cells harboring a cancer stem cell phenotype (CD44+/CD117+). Furthermore, CD44+/CD117+ cells isolated from human ovarian tumors express high levels of TG2. In summary, TGF-β-induced TG2 enhances ovarian tumor metastasis by inducing EMT and a cancer stem cell phenotype.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function.

              The alpha 1-adrenergic receptors activate a phospholipase C enzyme by coupling to members of the large molecular size (approximately 74 to 80 kilodaltons) G alpha h family of guanosine triphosphate (GTP)-binding proteins. Rat liver G alpha h is now shown to be a tissue transglutaminase type II (TGase II). The transglutaminase activity of rat liver TGase II expressed in COS-1 cells was inhibited by the nonhydrolyzable GTP analog guanosine 5'-O-(3-thiotriphosphate) or by alpha 1-adrenergic receptor activation. Rat liver TGase II also mediated alpha 1-adrenergic receptor stimulation of phospholipase C activity. Thus, G alpha h represents a new class of GTP-binding proteins that participate in receptor signaling and may be a component of a complex regulatory network in which receptor-stimulated GTP binding switches the function of G alpha h from transglutamination to receptor signaling.
                Bookmark

                Author and article information

                Journal
                Mediators Inflamm
                Mediators Inflamm
                MI
                Mediators of Inflammation
                Hindawi Publishing Corporation
                0962-9351
                1466-1861
                2015
                30 April 2015
                : 2015
                : 429653
                Affiliations
                Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus Liebig University Giessen, 35385 Giessen, Germany
                Author notes

                Academic Editor: Alex Kleinjan

                Author information
                http://orcid.org/0000-0001-7512-2051
                Article
                10.1155/2015/429653
                4431319
                2a19712e-1c3c-47b1-bd1c-18c926b3fc5d
                Copyright © 2015 Anna Zakrzewicz et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 January 2015
                : 1 April 2015
                : 1 April 2015
                Categories
                Research Article

                Immunology
                Immunology

                Comments

                Comment on this article