150
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intravital Imaging of a Massive Lymphocyte Response in the Cortical Dura of Mice after Peripheral Infection by Trypanosomes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Peripheral infection by Trypanosoma brucei, the protozoan responsible for sleeping sickness, activates lymphocytes, and, at later stages, causes meningoencephalitis. We have videoed the cortical meninges and superficial parenchyma of C56BL/6 reporter mice infected with T. b. brucei. By use of a two-photon microscope to image through the thinned skull, the integrity of the tissues was maintained. We observed a 47-fold increase in CD2+ T cells in the meninges by 12 days post infection (dpi). CD11c+ dendritic cells also increased, and extravascular trypanosomes, made visible either by expression of a fluorescent protein, or by intravenous injection of furamidine, appeared. The likelihood that invasion will spread from the meninges to the parenchyma will depend strongly on whether the trypanosomes are below the arachnoid membrane, or above it, in the dura. Making use of optical signals from the skull bone, blood vessels and dural cells, we conclude that up to 40 dpi, the extravascular trypanosomes were essentially confined to the dura, as were the great majority of the T cells. Inhibition of T cell activation by intraperitoneal injection of abatacept reduced the numbers of meningeal T cells at 12 dpi and their mean speed fell from 11.64 ± 0.34 μm/min (mean ± SEM) to 5.2 ± 1.2 μm/min (p = 0.007). The T cells occasionally made contact lasting tens of minutes with dendritic cells, indicative of antigen presentation. The population and motility of the trypanosomes tended to decline after about 30 dpi. We suggest that the lymphocyte infiltration of the meninges may later contribute to encephalitis, but have no evidence that the dural trypanosomes invade the parenchyma.

          Author Summary

          African trypanosomes are motile parasites that cause sleeping sickness. They multiply first in the blood then cause death mainly by effects on the brain: immune system cells, including T cells and dendritic cells, play major roles in this. Thinking we might see the attack on the brain, we infected mice with trypanosomes and used a two-photon microscope, which allowed us to image the superficial brain and the delicate tissue between the skull and the brain called the meninges without making a hole in the skull. The mice (which were anesthetized) had been genetically modified so that T cells and dendritic cells were fluorescent, as were the trypanosomes. We did not notice much happening in the brain itself, but in the meninges, in a compartment called the dura, huge numbers of T cells and dendritic cells appeared. Trypanosomes also moved from the blood into this compartment. Since T cells, dendritic cells and trypanosomes had not been videoed in the meninges before, we began by observing them carefully: their numbers, their movements and their interactions. The accumulation of lymphocytes is a sign of meningitis, a feature of infection by a wide range of pathogens and our results suggest interesting future work.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases.

          Primary T-cell responses in lymph nodes (LNs) require contact-dependent information exchange between T cells and dendritic cells (DCs). Because lymphocytes continually enter and leave normal LNs, the resident lymphocyte pool is composed of non-synchronized cells with different dwell times that display heterogeneous behaviour in mouse LNs in vitro. Here we employ two-photon microscopy in vivo to study antigen-presenting DCs and naive T cells whose dwell time in LNs was synchronized. During the first 8 h after entering from the blood, T cells underwent multiple short encounters with DCs, progressively decreased their motility, and upregulated activation markers. During the subsequent 12 h T cells formed long-lasting stable conjugates with DCs and began to secrete interleukin-2 and interferon-gamma. On the second day, coinciding with the onset of proliferation, T cells resumed their rapid migration and short DC contacts. Thus, T-cell priming by DCs occurs in three successive stages: transient serial encounters during the first activation phase are followed by a second phase of stable contacts culminating in cytokine production, which makes a transition into a third phase of high motility and rapid proliferation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions.

            The tissues of the central nervous system are effectively shielded from the blood circulation by specialized vessels that are impermeable not only to cells, but also to most macromolecules circulating in the blood. Despite this seemingly absolute seclusion, central nervous system tissues are subject to immune surveillance and are vulnerable to autoimmune attacks. Using intravital two-photon imaging in a Lewis rat model of experimental autoimmune encephalomyelitis, here we present in real-time the interactive processes between effector T cells and cerebral structures from their first arrival to manifest autoimmune disease. We observed that incoming effector T cells successively scanned three planes. The T cells got arrested to leptomeningeal vessels and immediately monitored the luminal surface, crawling preferentially against the blood flow. After diapedesis, the cells continued their scan on the abluminal vascular surface and the underlying leptomeningeal (pial) membrane. There, the T cells encountered phagocytes that effectively present antigens, foreign as well as myelin proteins. These contacts stimulated the effector T cells to produce pro-inflammatory mediators, and provided a trigger to tissue invasion and the formation of inflammatory infiltrations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Flagellar motility is required for the viability of the bloodstream trypanosome.

              The 9 + 2 microtubule axoneme of flagella and cilia represents one of the most iconic structures built by eukaryotic cells and organisms. Both unity and diversity are present among cilia and flagella on the evolutionary as well as the developmental scale. Some cilia are motile, whereas others function as sensory organelles and can variously possess 9 + 2 and 9 + 0 axonemes and other associated structures. How such unity and diversity are reflected in molecular repertoires is unclear. The flagellated protozoan parasite Trypanosoma brucei is endemic in sub-Saharan Africa, causing devastating disease in humans and other animals. There is little hope of a vaccine for African sleeping sickness and a desperate need for modern drug therapies. Here we present a detailed proteomic analysis of the trypanosome flagellum. RNA interference (RNAi)-based interrogation of this proteome provides functional insights into human ciliary diseases and establishes that flagellar function is essential to the bloodstream-form trypanosome. We show that RNAi-mediated ablation of various proteins identified in the trypanosome flagellar proteome leads to a rapid and marked failure of cytokinesis in bloodstream-form (but not procyclic insect-form) trypanosomes, suggesting that impairment of flagellar function may provide a method of disease control. A postgenomic meta-analysis, comparing the evolutionarily ancient trypanosome with other eukaryotes including humans, identifies numerous trypanosome-specific flagellar proteins, suggesting new avenues for selective intervention.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, CA USA )
                1935-2727
                1935-2735
                16 April 2015
                April 2015
                : 9
                : 4
                : e0003714
                Affiliations
                [1 ]Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
                [2 ]Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
                New York University School of Medicine, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JAC EM JMB MPB JCM. Performed the experiments: JAC EM RR AH. Analyzed the data: JAC JR EM JMB. Contributed reagents/materials/analysis tools: MPB JCM EM. Wrote the paper: JAC EM JR MPB JR. Provided a two-photon microscope: JMB.

                Article
                PNTD-D-14-02092
                10.1371/journal.pntd.0003714
                4400075
                25881126
                2a2d1f22-9e4c-4e78-85ff-81b495521dbb
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 2 December 2014
                : 19 March 2015
                Page count
                Figures: 11, Tables: 0, Pages: 29
                Funding
                This work was funded by the Bill and Melinda Gates Foundation [OPPGH5337] ( http://www.gatesfoundation.org/) and the Scottish Funding Council (SULSA) ( http://www.sulsa.ac.uk/). The Wellcome Trust Centre for Molecular Parasitology is supported by core funding from the Wellcome Trust [085349] ( http://www.wellcome.ac.uk/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article