62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of Stearoyl-CoA Desaturase 1 Expression Induces CHOP-Dependent Cell Death in Human Cancer Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cancer cells present a sustained de novo fatty acid synthesis with an increase of saturated and monounsaturated fatty acid (MUFA) production. This change in fatty acid metabolism is associated with overexpression of stearoyl-CoA desaturase 1 (Scd1), which catalyses the transformation of saturated fatty acids into monounsaturated fatty acids (e.g., oleic acid). Several reports demonstrated that inhibition of Scd1 led to the blocking of proliferation and induction of apoptosis in cancer cells. Nevertheless, mechanisms of cell death activation remain to be better understood.

          Principal Findings

          In this study, we demonstrated that Scd1 extinction by siRNA triggered abolition of de novo MUFA synthesis in cancer and non-cancer cells. Scd1 inhibition-activated cell death was only observed in cancer cells with induction of caspase 3 activity and PARP-cleavage. Exogenous supplementation with oleic acid did not reverse the Scd1 ablation-mediated cell death. In addition, Scd1 depletion induced unfolded protein response (UPR) hallmarks such as Xbp1 mRNA splicing, phosphorylation of eIF2α and increase of CHOP expression. However, the chaperone GRP78 expression, another UPR hallmark, was not affected by Scd1 knockdown in these cancer cells indicating a peculiar UPR activation. Finally, we showed that CHOP induction participated to cell death activation by Scd1 extinction. Indeed, overexpression of dominant negative CHOP construct and extinction of CHOP partially restored viability in Scd1-depleted cancer cells.

          Conclusion

          These results suggest that inhibition of de novo MUFA synthesis by Scd1 extinction could be a promising anti-cancer target by inducing cell death through UPR and CHOP activation.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum.

          Cellular stress, particularly in response to toxic and metabolic insults that perturb function of the endoplasmic reticulum (ER stress), is a powerful inducer of the transcription factor CHOP. The role of CHOP in the response of cells to injury associated with ER stress was examined in a murine deficiency model obtained by homologous recombination at the chop gene. Compared with the wild type, mouse embryonic fibroblasts (MEFs) derived from chop -/- animals exhibited significantly less programmed cell death when challenged with agents that perturb ER function. A similar deficit in programmed cells death in response to ER stress was also observed in MEFs that lack CHOP's major dimerization partner, C/EBPbeta, implicating the CHOP-C/EBP pathway in programmed cell death. An animal model for studying the effects of chop on the response to ER stress was developed. It entailed exposing mice with defined chop genotypes to a single sublethal intraperitoneal injection of tunicamycin and resulted in a severe illness characterized by transient renal insufficiency. In chop +/+ and chop +/- mice this was associated with the early expression of CHOP in the proximal tubules followed by the development of a histological picture similar to the human condition known as acute tubular necrosis, a process that resolved by cellular regeneration. In the chop -/- animals, in spite of the severe impairment in renal function, evidence of cellular death in the kidney was reduced compared with the wild type. The proximal tubule epithelium of chop -/- animals exhibited fourfold lower levels of TUNEL-positive cells (a marker for programmed cell death), and significantly less evidence for subsequent regeneration. CHOP therefore has a role in the induction of cell death under conditions associated with malfunction of the ER and may also have a role in cellular regeneration under such circumstances.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-cell apoptosis.

            Chronic free fatty acid (FFA) exposure induces pancreatic beta-cell death, which may contribute to the development of type 2 diabetes. The mechanisms involved in FFA-induced cell death are not completely understood. Here we have investigated the effect of FFA on endoplasmic reticulum (ER) stress pathways in INS-1 pancreatic beta-cells. INS-1 cells exposed to palmitate for 16-24 h under serum-free conditions showed marked apoptosis and increased protein levels of phosphorylated eukaryotic translation initiation factor 2alpha (eIF2alpha), activating transcription factor 4 (ATF4), X box-binding protein 1 (XBP-1), and C/EBP homologous transcription factor (CHOP) compared with control cells. The CHOP transcription factor has been implicated in mediating ER stress-induced apoptosis. Unexpectedly, the levels of the ER chaperone proteins Grp78/BiP and PDI were not affected by palmitate treatment, suggesting that the cell protective aspects of the unfolded protein response (UPR) are not up-regulated by palmitate. Palmitate-treated cells had markedly altered distribution of ER chaperones and altered ER morphology, suggesting that accumulation of misfolded proteins might trigger the ER stress response. In contrast, oleate treatment did not significantly induce the UPR pathways, nor was it as detrimental to INS-1 beta-cells. The results suggest that activation of the UPR may significantly contribute to palmitate- but not oleate-induced pancreatic beta-cell death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes.

              Overload of pancreatic beta cells in conditions such as hyperglycemia, obesity, and long-term treatment with sulfonylureas leads to beta cell exhaustion and type 2 diabetes. Because beta cell mass declines under these conditions, apparently as a result of apoptosis, we speculated that overload kills beta cells as a result of endoplasmic reticulum (ER) stress. The Akita mouse, which carries a conformation-altering missense mutation (Cys96Tyr) in Insulin 2, likewise exhibits hyperglycemia and a reduced beta cell mass. In the development of diabetes in Akita mice, mRNAs for the ER chaperone Bip and the ER stress-associated apoptosis factor Chop were induced in the pancreas. Overexpression of the mutant insulin in mouse MIN6 beta cells induced Chop expression and led to apoptosis. Targeted disruption of the Chop gene delayed the onset of diabetes in heterozygous Akita mice by 8-10 weeks. We conclude that ER overload in beta cells causes ER stress and leads to apoptosis via Chop induction. Our findings suggest a new therapeutic approach for preventing the onset of diabetes by inhibiting Chop induction or by increasing chaperone capacity in the ER.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                16 December 2010
                : 5
                : 12
                : e14363
                Affiliations
                [1]Université de Bourgogne, Centre de Recherche INSERM «Lipides, Nutrition, Cancer» UMR866, Dijon, France
                Texas A&M University, United States of America
                Author notes

                Conceived and designed the experiments: MMW ASP MN MR. Performed the experiments: MMW ASP LP CF MR. Analyzed the data: MMW ASP JB MN MR. Contributed reagents/materials/analysis tools: LP SB CF JB CT MR. Wrote the paper: MMW ASP LP MN MR.

                Article
                10-PONE-RA-21538R1
                10.1371/journal.pone.0014363
                3002938
                21179554
                2a2d3dbd-ad2e-4b98-a00a-c441670bd768
                Minville-Walz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 23 July 2010
                : 26 November 2010
                Page count
                Pages: 13
                Categories
                Research Article
                Oncology
                Cell Biology/Cell Signaling
                Cell Biology/Cellular Death and Stress Responses

                Uncategorized
                Uncategorized

                Comments

                Comment on this article