Wolbachia are required for filarial nematode survival and fertility and contribute to the immune responses associated with human filarial diseases. Here we developed whole-mount immunofluorescence techniques to characterize Wolbachia somatic and germline transmission patterns and tissue distribution in Brugia malayi, a nematode responsible for lymphatic filariasis. In the initial embryonic divisions, Wolbachia segregate asymmetrically such that they occupy only a small subset of cells in the developing embryo, facilitating their concentration in the adult hypodermal chords and female germline. Wolbachia are not found in male reproductive tissues and the absence of Wolbachia from embryonic germline precursors in half of the embryos indicates Wolbachia loss from the male germline may occur in early embryogenesis. Wolbachia rely on fusion of hypodermal cells to populate adult chords. Finally, we detect Wolbachia in the secretory canal lumen suggesting living worms may release bacteria and/or their products into their host.
Filarial diseases affect over 150 million people in tropical countries. They are caused by parasitic nematodes like Brugia malayi that rely on their endosymbiont Wolbachia for their survival and fertility. These bacteria are a recognized drug target in the search for treatments killing adult worms. To understand the transmission of Wolbachia from the embryonic to adult stages, we developed new techniques to track these bacteria at the cellular and tissue levels. These techniques include immunofluorescence in whole mount adult tissues and embryos. We found that Wolbachia segregate asymetrically in specific cells, in a lineage-specific manner during early Brugia embryogenesis, and rely on cell fusion to subsequently populate the adult hypodermal chords. From the chords, the Wolbachia can be secreted in the secretory-excretory canal, suggesting that in addition to dead worms releasing the bacteria in the human body, living worms may also secrete Wolbachia, whose role in stimulating the immune system in filarial pathologies is now well established.