Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Inhibition of MicroRNA-125a Promotes Human Endothelial Cell Proliferation and Viability through an Antiapoptotic Mechanism

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The microRNA-125a (miR-125a) is highly expressed in endothelial cells, but its role in vascular biology is not known. Endothelial cell proliferation and viability play an important role in endothelial healing, and we hypothesize that miR-125a regulates this process. The aim of the present study was to investigate if miR-125a controls human endothelial cell proliferation, viability and endothelial healing, and to assess the mechanisms involved. We showed that overexpression of miR-125a by transfection with miR-125a mimic reduced human umbilical vein endothelial cell (HUVEC) proliferation and viability, and stimulated apoptosis as demonstrated by a miR-125a-induced increase of the proportion of annexin V-positive cells monitored by flow cytometry. Moreover, we showed that the miR-125a mimic downregulated the antiapoptotic Bcl2 protein and upregulated caspase 3, suggesting that these two proteins represent molecular targets for miR-125a. Accordingly, transfection with miR-125a inhibitor, downregulating miR-125a expression, promoted HUVEC proliferation and viability, and reduced apoptosis. Importantly, transfection with miR-125a inhibitor promoted HUVEC tube formation in Matrigel, suggesting that reduction of miR-125a has a proangiogenic effect. In conclusion, downregulation of miR-125a through local transfection with miR-125a inhibitor might be a new way to enhance endothelial cell proliferation and viability, thereby promoting the reendothelialization observed in response to intimal injury.

          Related collections

          Most cited references 15

          • Record: found
          • Abstract: not found
          • Article: not found

          Revisiting the principles of microRNA target recognition and mode of action.

          MicroRNAs (miRNAs) are fundamental regulatory elements of animal and plant gene expression. Although rapid progress in our understanding of miRNA biogenesis has been achieved by experimentation, computational approaches have also been influential in determining the general principles that are thought to govern miRNA target recognition and mode of action. We discuss how these principles are being progressively challenged by genetic and biochemical studies. In addition, we discuss the role of target-site-specific endonucleolytic cleavage, which is the hallmark of experimental RNA interference and a mechanism that is used by plant miRNAs and a few animal miRNAs. Generally thought to be merely a degradation mechanism, we propose that this might also be a biogenesis mechanism for biologically functional, non-coding RNA fragments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b.

            Deregulation of micro-RNAs (miRNAs) is emerging as a major aspect of cancer etiology because their capacity to direct the translation and stability of targeted transcripts can dramatically influence cellular physiology. To explore the potential of exogenously applied miRNAs to suppress oncogenic proteins, the ERBB oncogene family was chosen with a bioinformatics search identifying targeting seed sequences for miR-125a and miR-125b within the 3'-untranslated regions of both ERBB2 and ERBB3. Using the human breast cancer cell line SKBR3 as a model for ERBB2 and ERBB3 dependence, infection of these cells with retroviral constructs expressing either miR-125a or miR-125b resulted in suppression of ERBB2 and ERBB3 at both the transcript and protein level. Luciferase constructs containing the 3' 3'-untranslated regions of ERBB2 and ERBB3 demonstrated approximately 35% less activity in miR-125a- and miR-125b-expressing cells relative to controls. Additionally, phosphorylation of ERK1/2 and AKT was suppressed in SKBR3 cells overexpressing either miR-125a or miR-125b. Consistent with suppression of both ERBB2 and ERBB3 signaling, miR-125a-or miR-125b-overexpressing SKBR3 cells were impaired in their anchorage-dependent growth and exhibited reduced migration and invasion capacities. Parallel studies performed on MCF10A cells demonstrated that miR-125a or miR-125b overexpression produced only marginal influences on the growth and migration of these non-transformed human mammary epithelial cells. These results illustrate the feasibility of using miRNAs as a therapeutic strategy to suppress oncogene expression and function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNA-181b regulates NF-κB-mediated vascular inflammation.

              EC activation and dysfunction have been linked to a variety of vascular inflammatory disease states. The function of microRNAs (miRNAs) in vascular EC activation and inflammation remains poorly understood. Herein, we report that microRNA-181b (miR-181b) serves as a potent regulator of downstream NF-κB signaling in the vascular endothelium by targeting importin-α3, a protein that is required for nuclear translocation of NF-κB. Overexpression of miR-181b inhibited importin-α3 expression and an enriched set of NF-κB-responsive genes such as adhesion molecules VCAM-1 and E-selectin in ECs in vitro and in vivo. In addition, treatment of mice with proinflammatory stimuli reduced miR-181b expression. Rescue of miR-181b levels by systemic administration of miR-181b "mimics" reduced downstream NF-κB signaling and leukocyte influx in the vascular endothelium and decreased lung injury and mortality in endotoxemic mice. In contrast, miR-181b inhibition exacerbated endotoxin-induced NF-κB activity, leukocyte influx, and lung injury. Finally, we observed that critically ill patients with sepsis had reduced levels of miR-181b compared with control intensive care unit (ICU) subjects. Collectively, these findings demonstrate that miR-181b regulates NF-κB-mediated EC activation and vascular inflammation in response to proinflammatory stimuli and that rescue of miR-181b expression could provide a new target for antiinflammatory therapy and critical illness.
                Bookmark

                Author and article information

                Journal
                JVR
                J Vasc Res
                10.1159/issn.1018-1172
                Journal of Vascular Research
                S. Karger AG
                1018-1172
                1423-0135
                2014
                August 2014
                09 August 2014
                : 51
                : 3
                : 239-245
                Affiliations
                aDepartment of Experimental Medical Science, Lund University, and bDepartment of Cardiology, Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
                Author notes
                *Dr. Bengt-Olof Nilsson, Department of Experimental Medical Science, Lund University, BMC D12, SE-221 84 Lund (Sweden), E-Mail bengt-olof.nilsson@med.lu.se
                Article
                365551 J Vasc Res 2014;51:239-245
                10.1159/000365551
                25116893
                © 2014 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 6, Pages: 7
                Categories
                Research Paper

                Comments

                Comment on this article