16
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lugol's solution-induced painless thyroiditis

      research-article
      ,
      Endocrinology, Diabetes & Metabolism Case Reports
      Bioscientifica Ltd

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lugol’s solution is usually employed for a limited period for thyroidectomy preparation in patients with Graves’ disease and for the control of severe thyrotoxicosis and thyroid storm. We describe a rare case of Lugol’s solution-induced painless thyroiditis. In November 2014, a 59-year-old woman was prescribed Lugol’s solution four drops per day for the alleviation of menopausal symptoms. She was referred to our clinic in June 2015 for fatigue, hair loss, and a 20-lb weight loss without thyroid pain or discomfort. Physical examination revealed a normal thyroid gland. On 7 May 2015, laboratory tests revealed a suppressed thyroid-stimulating hormone (TSH) 0.01 U/L with elevated free T4 3.31 ng/dL (42.54 pmol/L). Repeat testing on 25 May 2015 showed spontaneous normalization of the free thyroid hormone levels with persistently low TSH 0.10 U/L. Following these results, a family physician prescribed methimazole 10 mg PO TID and very soon after, the TSH concentration rose to >100 U/L along with subnormal free T4 and T3 levels. Methimazole was promptly discontinued, namely within 18 days of its initiation. Over the course of the next few months, the patient spontaneously achieved clinical and biochemical euthyroidism. To our knowledge, this is a unique case of painless thyroiditis induced by Lugol’s solution, which has not been reported before. Lugol’s solution is a short-term medication given for the preparation of thyroidectomy in patients with Graves’ disease and for the control of severe thyrotoxicosis. Iodine excess can cause both hyperthyroidism and hypothyroidism. Rarely, Lugol’s solution can cause acute painless thyroiditis.

          Learning points:
          • Lugol’s solution is used for thyroidectomy preparation in patients with Graves’ disease and for the control of severe thyrotoxicosis and thyroid storm.

          • Iodine excess can cause both hypothyroidism and thyrotoxicosis. Thyroid glands with an underlying pathology are particularly susceptible to the adverse effect of iodine.

          • The prolonged off-label use of Lugol’s solution can be harmful. Rarely, Lugol’s solution can cause acute painful thyroiditis.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: not found
          • Article: not found

          Plasma inorganic iodide as a homeostatic regulator of thyroid function.

            • Record: found
            • Abstract: found
            • Article: not found

            Escape from the acute Wolff-Chaikoff effect is associated with a decrease in thyroid sodium/iodide symporter messenger ribonucleic acid and protein.

            In 1948, Wolff and Chaikoff reported that organic binding of iodide in the thyroid was decreased when plasma iodide levels were elevated (acute Wolff-Chaikoff effect), and that adaptation or escape from the acute effect occurred in approximately 2 days, in the presence of continued high plasma iodide concentrations. We later demonstrated that the escape is attributable to a decrease in iodide transport into the thyroid, lowering the intrathyroidal iodine content below a critical inhibitory threshold and allowing organification of iodide to resume. We have now measured the rat thyroid sodium/iodide symporter (NIS) messenger RNA (mRNA) and protein levels, in response to both chronic and acute iodide excess, in an attempt to determine the mechanism responsible for the decreased iodide transport. Rats were given 0.05% NaI in their drinking water for 1 and 6 days in the chronic experiments, and a single 2000-microg dose of NaI i.p. in the acute experiments. Serum was collected for iodine and hormone measurements, and thyroids were frozen for subsequent measurement of NIS, TSH receptor, thyroid peroxidase (TPO), thyroglobulin, and cyclophilin mRNAs (by Northern blotting) as well as NIS protein (by Western blotting). Serum T4 and T3 concentrations were significantly decreased at 1 day in the chronic experiments and returned to normal at 6 days, and were unchanged in the acute experiments. Serum TSH levels were unchanged in both paradigms. Both NIS mRNA and protein were decreased at 1 and 6 days after chronic iodide ingestion. NIS mRNA was decreased at 6 and 24 h after acute iodide administration, whereas NIS protein was decreased only at 24 h. TPO mRNA was decreased at 6 days of chronic iodide ingestion and 24 h after acute iodide administration. There were no iodide-induced changes in TSH receptor and thyroglobulin mRNAs. These data suggest that iodide administration decreases both NIS mRNA and protein expression, by a mechanism that is likely to be, at least in part, transcriptional. Our findings support the hypothesis that the escape from the acute Wolff-Chaikoff effect is caused by a decrease in NIS, with a resultant decreased iodide transport into the thyroid. The observed decrease in TPO mRNA may contribute to the iodine-induced hypothyroidism that is common in patients with Hashimoto's thyroiditis.
              • Record: found
              • Abstract: found
              • Article: not found

              Approach to the patient with amiodarone-induced thyrotoxicosis.

              Amiodarone, a benzofuranic iodine-rich antiarrhythmic drug, causes thyroid dysfunction in 15-20% of cases. Although amiodarone-induced hypothyroidism poses no particular problem, amiodarone-induced thyrotoxicosis (AIT) is a diagnostic and therapeutic challenge. There are two main forms of AIT: type 1, a form of iodine-induced hyperthyroidism, and type 2, a drug-induced destructive thyroiditis. However, mixed/indefinite forms exist that may be caused by both pathogenic mechanisms. Type 1 AIT usually occurs in abnormal thyroid glands, whereas type 2 AIT develops in apparently normal thyroid glands (or small goiters). Diagnosis of thyrotoxicosis is easy, based on the finding of increased free thyroid hormone concentrations and suppressed TSH levels. Thyroid radioactive iodine (RAI) uptake values are usually very low/suppressed in type 2 AIT, most commonly low or low-normal, but sometimes normal or increased in type 1 AIT despite the iodine load. Color flow Doppler sonography shows absent hypervascularity in type 2 and increased vascularity in type 1 AIT. Mixed/indefinite forms may have features of both AIT types. Thionamides represent the first-line treatment for type 1 AIT, but the iodine-replete gland is not very responsive; potassium perchlorate, by inhibiting thyroid iodine uptake, may increase the response to thionamides. Type 2 AIT is best treated by oral glucocorticoids. The response very much depends on the thyroid volume and the severity of thyrotoxicosis. Mixed/indefinite forms may require a combination of thionamides, potassium perchlorate, and steroids. RAI is usually not feasible in AIT due to low RAI uptake values. Thyroidectomy represents a valid option in cases resistant to medical therapy.

                Author and article information

                Journal
                Endocrinol Diabetes Metab Case Rep
                Endocrinol Diabetes Metab Case Rep
                EDM
                Endocrinology, Diabetes & Metabolism Case Reports
                Bioscientifica Ltd (Bristol )
                2052-0573
                30 May 2017
                2017
                : 2017
                : 17-0034
                Affiliations
                [1]Division of Endocrinology and Metabolism , Department of Medicine, McGill University Health Centre, Montreal, QuebecCanada
                Author notes
                Correspondence should be addressed to J How; Email: jacques.how@ 123456mcgill.ca
                Article
                EDM170034
                10.1530/EDM-17-0034
                5467656
                2a3c536d-3055-4165-80a8-ce07f96fc1f6
                © 2017 The authors

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

                History
                : 23 February 2017
                : 3 July 2017
                Categories
                Unusual Effects of Medical Treatment

                Comments

                Comment on this article

                Related Documents Log