20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The neural and computational systems of social learning

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references161

          • Record: found
          • Abstract: found
          • Article: not found

          Social learning strategies.

          In most studies of social learning in animals, no attempt has been made to examine the nature of the strategy adopted by animals when they copy others. Researchers have expended considerable effort in exploring the psychological processes that underlie social learning and amassed extensive data banks recording purported social learning in the field, but the contexts under which animals copy others remain unexplored. Yet, theoretical models used to investigate the adaptive advantages of social learning lead to the conclusion that social learning cannot be indiscriminate and that individuals should adopt strategies that dictate the circumstances under which they copy others and from whom they learn. In this article, I discuss a number of possible strategies that are predicted by theoretical analyses, including copy when uncertain, copy the majority, and copy if better, and consider the empirical evidence in support of each, drawing from both the animal and human social learning literature. Reliance on social learning strategies may be organized hierarchically, their being employed by animals when unlearned and asocially learned strategies prove ineffective but before animals take recourse in innovation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Empathic neural responses are modulated by the perceived fairness of others.

            The neural processes underlying empathy are a subject of intense interest within the social neurosciences. However, very little is known about how brain empathic responses are modulated by the affective link between individuals. We show here that empathic responses are modulated by learned preferences, a result consistent with economic models of social preferences. We engaged male and female volunteers in an economic game, in which two confederates played fairly or unfairly, and then measured brain activity with functional magnetic resonance imaging while these same volunteers observed the confederates receiving pain. Both sexes exhibited empathy-related activation in pain-related brain areas (fronto-insular and anterior cingulate cortices) towards fair players. However, these empathy-related responses were significantly reduced in males when observing an unfair person receiving pain. This effect was accompanied by increased activation in reward-related areas, correlated with an expressed desire for revenge. We conclude that in men (at least) empathic responses are shaped by valuation of other people's social behaviour, such that they empathize with fair opponents while favouring the physical punishment of unfair opponents, a finding that echoes recent evidence for altruistic punishment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Predictive coding: an account of the mirror neuron system.

              Is it possible to understand the intentions of other people by simply observing their actions? Many believe that this ability is made possible by the brain's mirror neuron system through its direct link between action and observation. However, precisely how intentions can be inferred through action observation has provoked much debate. Here we suggest that the function of the mirror system can be understood within a predictive coding framework that appeals to the statistical approach known as empirical Bayes. Within this scheme the most likely cause of an observed action can be inferred by minimizing the prediction error at all levels of the cortical hierarchy that are engaged during action observation. This account identifies a precise role for the mirror system in our ability to infer intentions from actions and provides the outline of the underlying computational mechanisms.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Neuroscience
                Nat Rev Neurosci
                Springer Science and Business Media LLC
                1471-003X
                1471-0048
                March 12 2020
                Article
                10.1038/s41583-020-0276-4
                32221497
                2a42075f-2fd8-4d38-bd87-9d1315ba9365
                © 2020

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article