77
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNA expression profiles and type 1 diabetes mellitus: systematic review and bioinformatic analysis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Growing evidence indicates that microRNAs (miRNAs) have a key role in processes involved in type 1 diabetes mellitus (T1DM) pathogenesis, including immune system functions and beta-cell metabolism and death. Although dysregulated miRNA profiles have been identified in T1DM patients, results are inconclusive; with only few miRNAs being consistently dysregulated among studies. Thus, we performed a systematic review of the literature on the subject, followed by bioinformatic analysis, to point out which miRNAs are dysregulated in T1DM-related tissues and in which pathways they act. PubMed and EMBASE were searched to identify all studies that compared miRNA expressions between T1DM patients and non-diabetic controls. Search was completed in August, 2017. Those miRNAs consistently dysregulated in T1DM-related tissues were submitted to bioinformatic analysis, using six databases of miRNA–target gene interactions to retrieve their putative targets and identify potentially affected pathways under their regulation. Thirty-three studies were included in the systematic review: 19 of them reported miRNA expressions in human samples, 13 in murine models and one in both human and murine samples. Among 278 dysregulated miRNAs reported in these studies, 25.9% were reported in at least 2 studies; however, only 48 of them were analyzed in tissues directly related to T1DM pathogenesis (serum/plasma, pancreas and peripheral blood mononuclear cells (PBMCs)). Regarding circulating miRNAs, 11 were consistently dysregulated in T1DM patients compared to controls: miR-21-5p, miR-24-3p, miR-100-5p, miR-146a-5p, miR-148a-3p, miR-150-5p, miR-181a-5p, miR-210-5p, miR-342-3p, miR-375 and miR-1275. The bioinformatic analysis retrieved a total of 5867 validated and 2979 predicted miRNA–target interactions for human miRNAs. In functional enrichment analysis of miRNA target genes, 77 KEGG terms were enriched for more than one miRNA. These miRNAs are involved in pathways related to immune system function, cell survival, cell proliferation and insulin biosynthesis and secretion. In conclusion, eleven circulating miRNAs seem to be dysregulated in T1DM patients in different studies, being potential circulating biomarkers of this disease.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites

          mirSVR is a new machine learning method for ranking microRNA target sites by a down-regulation score. The algorithm trains a regression model on sequence and contextual features extracted from miRanda-predicted target sites. In a large-scale evaluation, miRanda-mirSVR is competitive with other target prediction methods in identifying target genes and predicting the extent of their downregulation at the mRNA or protein levels. Importantly, the method identifies a significant number of experimentally determined non-canonical and non-conserved sites.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            miRecords: an integrated resource for microRNA–target interactions

            MicroRNAs (miRNAs) are an important class of small noncoding RNAs capable of regulating other genes’ expression. Much progress has been made in computational target prediction of miRNAs in recent years. More than 10 miRNA target prediction programs have been established, yet, the prediction of animal miRNA targets remains a challenging task. We have developed miRecords, an integrated resource for animal miRNA–target interactions. The Validated Targets component of this resource hosts a large, high-quality manually curated database of experimentally validated miRNA–target interactions with systematic documentation of experimental support for each interaction. The current release of this database includes 1135 records of validated miRNA–target interactions between 301 miRNAs and 902 target genes in seven animal species. The Predicted Targets component of miRecords stores predicted miRNA targets produced by 11 established miRNA target prediction programs. miRecords is expected to serve as a useful resource not only for experimental miRNA researchers, but also for informatics scientists developing the next-generation miRNA target prediction programs. The miRecords is available at http://miRecords.umn.edu/miRecords.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database

              MicroRNAs (miRNAs) are small non-coding RNAs of approximately 22 nucleotides, which negatively regulate the gene expression at the post-transcriptional level. This study describes an update of the miRTarBase (http://miRTarBase.mbc.nctu.edu.tw/) that provides information about experimentally validated miRNA-target interactions (MTIs). The latest update of the miRTarBase expanded it to identify systematically Argonaute-miRNA-RNA interactions from 138 crosslinking and immunoprecipitation sequencing (CLIP-seq) data sets that were generated by 21 independent studies. The database contains 4966 articles, 7439 strongly validated MTIs (using reporter assays or western blots) and 348 007 MTIs from CLIP-seq. The number of MTIs in the miRTarBase has increased around 7-fold since the 2014 miRTarBase update. The miRNA and gene expression profiles from The Cancer Genome Atlas (TCGA) are integrated to provide an effective overview of this exponential growth in the miRNA experimental data. These improvements make the miRTarBase one of the more comprehensively annotated, experimentally validated miRNA-target interactions databases and motivate additional miRNA research efforts.

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                November 2017
                06 October 2017
                : 6
                : 8
                : 773-790
                Affiliations
                [1 ]Endocrine Division Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
                [2 ]Postgraduation Program in Medical Sciences: Endocrinology Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
                [3 ]Institute of Informatics Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
                Author notes
                Correspondence should be addressed to D Crispim; Email: dcmoreira@ 123456hcpa.edu.br
                Article
                EC170248
                10.1530/EC-17-0248
                5682418
                28986402
                2a475b9b-369c-4047-bbdf-55f35893773f
                © 2017 The authors

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License..

                History
                : 15 September 2017
                : 6 October 2017
                Categories
                Research

                systematic review,microrna,type 1 diabetes mellitus,bioinformatic analysis

                Comments

                Comment on this article

                Related Documents Log