5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Three-Dimensional Fractional Topological Insulators in Coupled Rashba Layers

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We propose a model of three-dimensional topological insulators consisting of weakly coupled electron- and hole-gas layers with Rashba spin-orbit interaction stacked along a given axis. We show that in the presence of strong electron-electron interactions the system realizes a fractional strong topological insulator, where the rotational symmetry and condensation energy arguments still allow us to treat the problem as quasi-one-dimensional with bosonization techniques. We also show that if Rashba and Dresselhaus spin-orbit interaction terms are equally strong, by doping the system with magnetic impurities, one can bring it into the Weyl semimetal phase.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A topological Dirac insulator in a quantum spin Hall phase : Experimental observation of first strong topological insulator

          When electrons are subject to a large external magnetic field, the conventional charge quantum Hall effect \cite{Klitzing,Tsui} dictates that an electronic excitation gap is generated in the sample bulk, but metallic conduction is permitted at the boundary. Recent theoretical models suggest that certain bulk insulators with large spin-orbit interactions may also naturally support conducting topological boundary states in the extreme quantum limit, which opens up the possibility for studying unusual quantum Hall-like phenomena in zero external magnetic field. Bulk Bi\(_{1-x}\)Sb\(_x\) single crystals are expected to be prime candidates for one such unusual Hall phase of matter known as the topological insulator. The hallmark of a topological insulator is the existence of metallic surface states that are higher dimensional analogues of the edge states that characterize a spin Hall insulator. In addition to its interesting boundary states, the bulk of Bi\(_{1-x}\)Sb\(_x\) is predicted to exhibit three-dimensional Dirac particles, another topic of heightened current interest. Here, using incident-photon-energy-modulated (IPEM-ARPES), we report the first direct observation of massive Dirac particles in the bulk of Bi\(_{0.9}\)Sb\(_{0.1}\), locate the Kramers' points at the sample's boundary and provide a comprehensive mapping of the topological Dirac insulator's gapless surface modes. These findings taken together suggest that the observed surface state on the boundary of the bulk insulator is a realization of the much sought exotic "topological metal". They also suggest that this material has potential application in developing next-generation quantum computing devices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Topological Insulators in Three Dimensions

            (2007)
            We study three dimensional generalizations of the quantum spin Hall (QSH) effect. Unlike two dimensions, where the QSH effect is distinguished by a single \(Z_2\) topological invariant, in three dimensions there are 4 invariants distinguishing 16 "topological insulator" phases. There are two general classes: weak (WTI) and strong (STI) topological insulators. The WTI states are equivalent to layered 2D QSH states, but are fragile because disorder continuously connects them to band insulators. The STI states are robust and have surface states that realize the 2+1 dimensional parity anomaly without fermion doubling, giving rise to a novel "topological metal" surface phase. We introduce a tight binding model which realizes both the WTI and STI phases, and we discuss the relevance of this model to real three dimensional materials, including bismuth.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              \(Z_2\) Topological Order and the Quantum Spin Hall Effect

              The quantum spin Hall (QSH) phase is a time reversal invariant electronic state with a bulk electronic band gap that supports the transport of charge and spin in gapless edge states. We show that this phase is associated with a novel \(Z_2\) topological invariant, which distinguishes it from an ordinary insulator. The \(Z_2\) classification, which is defined for time reversal invariant Hamiltonians, is analogous to the Chern number classification of the quantum Hall effect. We establish the \(Z_2\) order of the QSH phase in the two band model of graphene and propose a generalization of the formalism applicable to multi band and interacting systems.
                Bookmark

                Author and article information

                Journal
                2017-06-29
                Article
                1706.09863
                2a4d222c-d043-4211-b1e7-1fa6413f839c

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                cond-mat.mes-hall

                Nanophysics
                Nanophysics

                Comments

                Comment on this article