222
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spotlight on sirukumab for the treatment of rheumatoid arthritis: the evidence to date

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease primarily affecting synovial joints and is characterized by persistent high-grade systemic inflammation. Proinflammatory cytokines, particularly interleukin-6 (IL-6), are of crucial importance in the pathogenesis of the disease, driving both joint inflammation and extra-articular comorbidities. Tocilizumab, a humanized IL-6 receptor-inhibiting monoclonal antibody, has been the first, and, to date, the only, IL-6 inhibitor approved for the treatment of RA. Many studies have demonstrated the potency and effectiveness of tocilizumab in controlling disease activity and radiological progression of RA. These successful results have encouraged the development of novel IL-6 inhibitors, among which a promising agent is sirukumab (SRK), a human anti-IL-6 monoclonal antibody currently under evaluation in Phase II/III studies in patients with RA, systemic lupus erythematosus, giant-cell arteritis, and major depressive disorder. The evidence to date indicates SRK as an effective and well-tolerated new therapeutic tool for patients with active RA, with some preliminary data suggesting a specific beneficial impact on relevant systemic complications associated with the disease, such as depression and cardiovascular disease. Conversely, although pathophysiological considerations make plausible the hypothesis that IL-6 blockade with SRK may also be beneficial in the treatment of many diseases other than RA (either autoimmune or not), available clinical data in patients with systemic lupus erythematosus do not seem to support this view, also giving rise to potentially relevant concerns about drug safety. If large Phase III clinical trials currently in progress in patients with RA confirm the efficacy and tolerability of SRK, then in the long term, this drug could, in the near future, occupy a place in the treatment of the disease, potentially also opening the doors to a more extended use of SRK in a wide range of disorders in which IL-6 plays a key pathogenic role.

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Hepcidin and iron regulation, 10 years later.

          Tomas Ganz (2011)
          Under evolutionary pressure to counter the toxicity of iron and to maintain adequate iron supply for hemoglobin synthesis and essential metabolic functions, humans and other vertebrates have effective mechanisms to conserve iron and to regulate its concentration, storage, and distribution in tissues. The iron-regulatory hormone hepcidin, first described 10 years ago, and its receptor and iron channel ferroportin control the dietary absorption, storage, and tissue distribution of iron. Hepcidin causes ferroportin internalization and degradation, thereby decreasing iron transfer into blood plasma from the duodenum, from macrophages involved in recycling senescent erythrocytes, and from iron-storing hepatocytes. Hepcidin is feedback regulated by iron concentrations in plasma and the liver and by erythropoietic demand for iron. Genetic malfunctions affecting the hepcidin-ferroportin axis are a main cause of iron overload disorders but can also cause iron-restricted anemias. Modulation of hepcidin and ferroportin expression during infection and inflammation couples iron metabolism to host defense and decreases iron availability to invading pathogens. This response also restricts the iron supply to erythropoietic precursors and may cause or contribute to the anemia associated with infections and inflammatory disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interleukin-6 and its receptors: a highly regulated and dynamic system.

            Interleukin-6 (IL-6) is a multifunctional cytokine with well-defined pro- and anti-inflammatory properties. Although only small amounts in the picogram range can be detected in healthy humans, IL-6 expression is highly and transiently up-regulated in nearly all pathophysiological states. IL-6 induces intracellular signaling pathways after binding to its membrane-bound receptor (IL-6R), which is only expressed on hepatocytes and certain subpopulations of leukocytes (classic signaling). Transduction of the signal is mediated by the membrane-bound β-receptor glycoprotein 130 (gp130). In a second pathway, named trans-signaling, IL-6 binds to soluble forms of the IL-6R (sIL-6R), and this agonistic IL-6/sIL-6R complexes can in principle activate all cells due to the uniform expression of gp130. Importantly, several soluble forms of gp130 (sgp130) are found in the human blood, which are considered to be the natural inhibitors of IL-6 trans-signaling. Most pro-inflammatory roles of IL-6 have been attributed to the trans-signaling pathway, whereas anti-inflammatory and regenerative signaling, including the anti-bacterial acute phase response of the liver, is mediated by IL-6 classic signaling. In this simplistic view, only a minority of cell types expresses the IL-6R and is therefore responsive for IL-6 classic signaling, whereas gp130 is ubiquitously expressed throughout the human body. However, several reports point towards a much more complex situation. A plethora of factors, including proteases, cytokines, chemical drugs, and intracellular signaling pathways, are able to modulate the cellular expression of the membrane-bound and soluble forms of IL-6R and gp130. In this review, we summarize current knowledge of regulatory mechanisms that control and regulate the dynamic expression of IL-6 and its two receptors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Muscle-derived interleukin-6: mechanisms for activation and possible biological roles.

              It has recently been demonstrated that the marked increase in the systemic concentration of cytokine interleukin-6 (IL-6) seen with exercise originates from the contracting limb and that skeletal muscle cells per se are the likely source of the production. This review summarizes the possible mechanisms for activation and biological consequences of muscle-derived IL-6. It appears that intramuscular IL-6 is stimulated by complex signaling cascades initiated by both calcium (Ca2+) -dependent and -independent stimuli. It also seems likely that skeletal muscle produces IL-6 to aid in maintaining metabolic homeostasis during periods of altered metabolic demand such as muscular exercise or insulin stimulation. It may do so via local and/or systemic effects. This review also explores the efficacy that IL-6 may be used as a therapeutic drug in treating metabolic disorders such as obesity, type 2 diabetes, and atherosclerosis.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2016
                26 September 2016
                : 10
                : 3083-3098
                Affiliations
                [1 ]Department of Medical Sciences, Surgery and Neurosciences, University of Siena
                [2 ]Stroke Unit, University Hospital of Siena, Siena, Italy
                Author notes
                Correspondence: Pietro Enea Lazzerini, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Viale Bracci, 53100, Siena, Italy, Tel +39 0577 558 5743, Fax +39 0577 233318, Email lazzerini7@ 123456unisi.it
                Article
                dddt-10-3083
                10.2147/DDDT.S99898
                5044992
                2a52e8e9-3c5e-4667-9133-59e2081dc3ba
                © 2016 Lazzerini et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Pharmacology & Pharmaceutical medicine
                sirukumab,rheumatoid arthritis,interleukin-6,tocilizumab,systemic lupus erythematosus,cardiovascular disease

                Comments

                Comment on this article