Blog
About

1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Investigation of the Heat Budget of the Tropical Indian Ocean During Indian Ocean Dipole Events Occurring After ENSO

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Indian Ocean Dipole (IOD) is an important natural mode of the tropical Indian Ocean (TIO). Sea surface temperature anomaly (SSTA) variations in the TIO are an essential focus of the study of the IOD. Monthly variations of air-sea heat flux, rate of change of heat content and oceanic thermal advection in positive/negative IOD events (pIODs/nIODs) occurring after El Niño/La Niña were investigated, using long-series authoritative data, including sea surface wind, sea surface flux, ocean current, etc. It was found that the zonal wind anomaly induced by the initial SSTA gradient is the main trigger of IODs occurring after ENSOs. In pIODs, SSTA evolution in the TIO is primarily determined by the local surface heat flux anomaly, while in nIODs, it is controlled by anomalous oceanic thermal advection. The anomalous southwestern anticyclonic circulation in pIODs enhances regional differences in evaporative capacity and latent heat, and in nIODs, it augments the east-west difference in the advective thermal budget. Further, the meridional anomaly mechanism is also non-negligible during the development of nIODs. As the SWA moves eastward, the meridional SWA prevails near 60°E and the corresponding meridional anomalous current appears. The corresponding maximum meridional thermal advection anomaly reaches 200 W m −2 in September.

          Related collections

          Author and article information

          Journal
          JOUC
          Journal of Ocean University of China
          Science Press and Springer (China )
          1672-5182
          02 May 2020
          01 June 2020
          : 19
          : 3
          : 525-535
          Affiliations
          1College of Oceanic and Atmospheric Science, Ocean University of China, Qingdao 266100, China
          Author notes
          *Corresponding author: WU Kejian, E-mail: kejianwu@ 123456ouc.edu.cn
          Article
          s11802-020-4269-8
          10.1007/s11802-020-4269-8
          Copyright © Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2020.

          The copyright to this article, including any graphic elements therein (e.g. illustrations, charts, moving images), is hereby assigned for good and valuable consideration to the editorial office of Journal of Ocean University of China, Science Press and Springer effective if and when the article is accepted for publication and to the extent assignable if assignability is restricted for by applicable law or regulations (e.g. for U.S. government or crown employees).

          Product
          Self URI (journal-page): https://www.springer.com/journal/11802

          Comments

          Comment on this article