11
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanical ventilation and intra-abdominal hypertension: 'Beyond Good and Evil'

      , 1 , 1

      Critical Care

      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intra-abdominal hypertension is frequent in surgical and medical critically ill patients. Intra-abdominal hypertension has a serious impact on the function of respiratory as well as peripheral organs. In the presence of alveolar capillary damage, which occurs in acute respiratory distress syndrome (ARDS), intra-abdominal hypertension promotes lung injury as well as edema, impedes the pulmonary lymphatic drainage, and increases intra-thoracic pressures, leading to atelectasis, airway closure, and deterioration of respiratory mechanics and gas exchange. The optimal setting of mechanical ventilation and its impact on respiratory function and hemodynamics in ARDS associated with intra-abdominal hypertension are far from being assessed. We suggest that the optimal ventilator management of patients with ARDS and intra-abdominal hypertension would include the following: (a) intra-abdominal, esophageal pressure, and hemodynamic monitoring; (b) ventilation setting with protective tidal volume, recruitment maneuver, and level of positive end-expiratory pressure set according to the 'best' compliance of the respiratory system or the lung; (c) deep sedation with or without neuromuscular paralysis in severe ARDS; and (d) open abdomen in selected patients with severe abdominal compartment syndrome.

          Related collections

          Most cited references 14

          • Record: found
          • Abstract: found
          • Article: not found

          Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes?

          To assess the possible differences in respiratory mechanics between the acute respiratory distress syndrome (ARDS) originating from pulmonary disease (ARDSp) and that originating from extrapulmonary disease (ARDSexp) we measured the total respiratory system (Est,rs), chest wall (Est,w) and lung (Est,L) elastance, the intra-abdominal pressure (IAP), and the end-expiratory lung volume (EELV) at 0, 5, 10, and 15 cm H2O positive end-expiratory pressure (PEEP) in 12 patients with ARDSp and nine with ARDSexp. At zero end-expiratory pressure (ZEEP), Est,rs and EELV were similar in both groups of patients. The Est,L, however, was markedly higher in the ARDSp group than in the ARDSexp group (20.2 +/- 5.4 versus 13.8 +/- 5.0 cm H2O/L, p < 0.05), whereas Est,w was abnormally increased in the ARDSexp group (12.1 +/- 3.8 versus 5.2 +/- 1.9 cm H2O/L, p < 0.05). The IAP was higher in ARDSexp than in ARDSp (22.2 +/- 6.0 versus 8.5 +/- 2.9 cm H2O, p < 0.01), and it significantly correlated with Est,w (p < 0. 01). Increasing PEEP to 15 cm H2O caused an increase of Est,rs in ARDSp (from 25.4 +/- 6.2 to 31.2 +/- 11.3 cm H2O/L, p < 0.01) and a decrease in ARDSexp (from 25.9 +/- 5.4 to 21.4 +/- 55.5 cm H2O/L, p < 0.01). The estimated recruitment at 15 cm H2O PEEP was -0.031 +/- 0.092 versus 0.293 +/- 0.241 L in ARDSp and ARDSexp, respectively (p < 0.01). The different respiratory mechanics and response to PEEP observed are consistent with a prevalence of consolidation in ARDSp as opposed to prevalent edema and alveolar collapse in ARDSexp.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Meta-analysis: ventilation strategies and outcomes of the acute respiratory distress syndrome and acute lung injury.

            Trials have provided conflicting results regarding the effect of different ventilatory strategies on the outcomes of patients with the acute respiratory distress syndrome (ARDS) and acute lung injury. To determine whether ventilation with low tidal volume (Vt) and limited airway pressure or higher positive end-expiratory pressure (PEEP) improves outcomes for patients with ARDS or acute lung injury. Multiple computerized databases (through March 2009), reference lists of identified articles, and queries of principal investigators. No language restrictions were applied. Randomized, controlled trials (RCTs) reporting mortality and comparing lower versus higher Vt ventilation, lower versus higher PEEP, or a combination of both in adults with ARDS or acute lung injury. Using a standard protocol, 2 reviewer teams assessed trial eligibility and abstracted data on quality of study design and conduct, population characteristics, intervention, co-interventions, and confounding variables. 4 RCTs tested lower versus higher Vt ventilation at similar PEEP in 1149 patients, 3 RCTs compared lower versus higher PEEP at low Vt ventilation in 2299 patients, and 2 RCTs compared a combination of higher Vt and lower PEEP ventilation versus lower Vt and higher PEEP ventilation in 148 patients. Lower Vt ventilation reduced hospital mortality (odds ratio, 0.75 [95% CI, 0.58 to 0.96]; P = 0.02) compared with higher Vt ventilation at similar PEEP. Higher PEEP did not reduce hospital mortality (odds ratio, 0.86 [CI, 0.72 to 1.02]; P = 0.08) compared with lower PEEP using low Vt ventilation. Higher PEEP reduced the need for rescue therapy to prevent life-threatening hypoxemia (odds ratio, 0.51 [CI, 0.36 to 0.71]; P < 0.001) and death (odds ratio, 0.51 [CI, 0.36 to 0.71]; P < 0.001) in patients receiving rescue therapies. Pooling according to similar ventilatory strategies resulted in few RCTs analyzed in each group. The benefit of low Vt is derived from only 1 study. Available evidence from a limited number of RCTs shows better outcomes with routine use of low Vt but not high PEEP ventilation in unselected patients with ARDS or acute lung injury. High PEEP may help to prevent life-threatening hypoxemia in selected patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              An updated study-level meta-analysis of randomised controlled trials on proning in ARDS and acute lung injury

              Introduction In patients with acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS), recent randomised controlled trials (RCTs) showed a consistent trend of mortality reduction with prone ventilation. We updated a meta-analysis on this topic. Methods RCTs that compared ventilation of adult patients with ALI/ARDS in prone versus supine position were included in this study-level meta-analysis. Analysis was made by a random-effects model. The effect size on intensive care unit (ICU) mortality was computed in the overall included studies and in two subgroups of studies: those that included all ALI or hypoxemic patients, and those that restricted inclusion to only ARDS patients. A relationship between studies' effect size and daily prone duration was sought with meta-regression. We also computed the effects of prone positioning on major adverse airway complications. Results Seven RCTs (including 1,675 adult patients, of whom 862 were ventilated in the prone position) were included. The four most recent trials included only ARDS patients, and also applied the longest proning durations and used lung-protective ventilation. The effects of prone positioning differed according to the type of study. Overall, prone ventilation did not reduce ICU mortality (odds ratio = 0.91, 95% confidence interval = 0.75 to 1.2; P = 0.39), but it significantly reduced the ICU mortality in the four recent studies that enrolled only patients with ARDS (odds ratio = 0.71; 95% confidence interval = 0.5 to 0.99; P = 0.048; number needed to treat = 11). Meta-regression on all studies disclosed only a trend to explain effect variation by prone duration (P = 0.06). Prone positioning was not associated with a statistical increase in major airway complications. Conclusions Long duration of ventilation in prone position significantly reduces ICU mortality when only ARDS patients are considered.
                Bookmark

                Author and article information

                Contributors
                Journal
                Crit Care
                Crit Care
                Critical Care
                BioMed Central
                1364-8535
                1466-609X
                2012
                18 December 2012
                18 December 2013
                : 16
                : 6
                : 187
                Affiliations
                [1 ]Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, L.go R. Benzi, 8 - 16132 Genoa, Italy
                Article
                cc11874
                10.1186/cc11874
                3672607
                23256904
                Copyright ©2012 BioMed Central Ltd
                Categories
                Commentary

                Emergency medicine & Trauma

                Comments

                Comment on this article