9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Source–Receptor Relationship Revealed by the Halted Traffic and Aggravated Haze in Beijing during the COVID-19 Lockdown

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The COVID-19 outbreak greatly limited human activities and reduced primary emissions particularly from urban on-road vehicles but coincided with Beijing experiencing “pandemic haze,” raising the public concerns about the effectiveness of imposed traffic policies to improve the air quality. This paper explores the relationship between local vehicle emissions and the winter haze in Beijing before and during the COVID-19 lockdown based on an integrated analysis framework, which combines a real-time on-road emission inventory, in situ air quality observations, and a localized numerical modeling system. We found that traffic emissions decreased substantially during the COVID-19 pandemic, but its imbalanced emission abatement of NO x (76%, 125.3 Mg/day) and volatile organic compounds (VOCs, 53%, 52.9 Mg/day) led to a significant rise of atmospheric oxidants in urban areas, resulting in a modest increase in secondary aerosols due to inadequate precursors, which still offset reduced primary emissions. Moreover, the enhanced oxidizing capacity in the surrounding regions greatly increased the secondary particles with relatively abundant precursors, which was transported into Beijing and mainly responsible for the aggravated haze pollution. We recommend that mitigation policies should focus on accelerating VOC emission reduction and synchronously controlling regional sources to release the benefits of local traffic emission control.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China

          Responding to an outbreak of a novel coronavirus (agent of COVID-19) in December 2019, China banned travel to and from Wuhan city on 23 January and implemented a national emergency response. We investigated the spread and control of COVID-19 using a unique data set including case reports, human movement and public health interventions. The Wuhan shutdown was associated with the delayed arrival of COVID-19 in other cities by 2.91 days (95%CI: 2.54-3.29). Cities that implemented control measures pre-emptively reported fewer cases, on average, in the first week of their outbreaks (13.0; 7.1-18.8) compared with cities that started control later (20.6; 14.5-26.8). Suspending intra-city public transport, closing entertainment venues and banning public gatherings were associated with reductions in case incidence. The national emergency response appears to have delayed the growth and limited the size of the COVID-19 epidemic in China, averting hundreds of thousands of cases by 19 February (day 50).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High secondary aerosol contribution to particulate pollution during haze events in China.

            Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Drivers of improved PM 2.5 air quality in China from 2013 to 2017

              Significance The high frequency of haze pollution in China has attracted broad attention and triggered, in 2013, the promulgation of the toughest-ever clean air policy in the country. In this study, we quantified the air quality and health benefits from specific clean air actions by combining a chemical transport model with a detailed emission inventory. As tremendous efforts and resources are needed for mitigating emissions from various sources, evaluation of the effectiveness of these measures can provide crucial information for developing air quality policies in China as well as in other developing and highly polluting countries. Based on measure-specific analysis, our results bear out several important implications for designing future clean air policies.
                Bookmark

                Author and article information

                Journal
                Environ Sci Technol
                Environ Sci Technol
                es
                esthag
                Environmental Science & Technology
                American Chemical Society
                0013-936X
                1520-5851
                23 November 2020
                15 December 2020
                : 54
                : 24
                : 15660-15670
                Affiliations
                []State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, International Joint Laboratory on Low Carbon Clean Energy Innovation, School of the Environment, Tsinghua University , Beijing 100084, China
                []Zachry Department of Civil and Environmental Engineering, Texas A&M University , College Station, Texas 77843, United States
                [§ ]Centre for Atmospheric Science, Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, U.K.
                []Chinese Research Academy of Environmental Sciences , Beijing 100012, China
                []Beijing Transport Institute , Beijing 100073, China
                Author notes
                [* ]Email: liu_env@ 123456tsinghua.edu.cn . Tel.: 86-10-62771679.
                Article
                10.1021/acs.est.0c04941
                7724757
                33225703
                2a65f112-26b3-42ea-b45a-6112dccfe4cb
                © 2020 American Chemical Society

                This article is made available via the PMC Open Access Subset for unrestricted RESEARCH re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 24 July 2020
                : 11 November 2020
                : 08 November 2020
                Categories
                Article
                Custom metadata
                es0c04941
                es0c04941

                General environmental science
                General environmental science

                Comments

                Comment on this article