53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Brake wear particle emissions: a review

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Traffic-related sources have been recognized as a significant contributor of particulate matter particularly within major cities. Exhaust and non-exhaust traffic-related sources are estimated to contribute almost equally to traffic-related PM 10 emissions. Non-exhaust particles can be generated either from non-exhaust sources such as brake, tyre, clutch and road surface wear or already exist in the form of deposited material at the roadside and become resuspended due to traffic-induced turbulence. Among non-exhaust sources, brake wear can be a significant particulate matter (PM) contributor, particularly within areas with high traffic density and braking frequency. Studies mention that in urban environments, brake wear can contribute up to 55 % by mass to total non-exhaust traffic-related PM 10 emissions and up to 21 % by mass to total traffic-related PM 10 emissions, while in freeways, this contribution is lower due to lower braking frequency. As exhaust emissions control become stricter, relative contributions of non-exhaust sources—and therefore brake wear—to traffic-related emissions will become more significant and will raise discussions on possible regulatory needs. The aim of the present literature review study is to present the state-of-the-art of the different aspects regarding PM resulting from brake wear and provide all the necessary information in terms of importance, physicochemical characteristics, emission factors and possible health effects.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          Fine particulate air pollution and mortality in 20 U.S. cities, 1987-1994.

          Air pollution in cities has been linked to increased rates of mortality and morbidity in developed and developing countries. Although these findings have helped lead to a tightening of air-quality standards, their validity with respect to public health has been questioned. We assessed the effects of five major outdoor-air pollutants on daily mortality rates in 20 of the largest cities and metropolitan areas in the United States from 1987 to 1994. The pollutants were particulate matter that is less than 10 microm in aerodynamic diameter (PM10), ozone, carbon monoxide, sulfur dioxide, and nitrogen dioxide. We used a two-stage analytic approach that pooled data from multiple locations. After taking into account potential confounding by other pollutants, we found consistent evidence that the level of PM10 is associated with the rate of death from all causes and from cardiovascular and respiratory illnesses. The estimated increase in the relative rate of death from all causes was 0.51 percent (95 percent posterior interval, 0.07 to 0.93 percent) for each increase in the PM10 level of 10 microg per cubic meter. The estimated increase in the relative rate of death from cardiovascular and respiratory causes was 0.68 percent (95 percent posterior interval, 0.20 to 1.16 percent) for each increase in the PM10 level of 10 microg per cubic meter. There was weaker evidence that increases in ozone levels increased the relative rates of death during the summer, when ozone levels are highest, but not during the winter. Levels of the other pollutants were not significantly related to the mortality rate. There is consistent evidence that the levels of fine particulate matter in the air are associated with the risk of death from all causes and from cardiovascular and respiratory illnesses. These findings strengthen the rationale for controlling the levels of respirable particles in outdoor air.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sources and properties of non-exhaust particulate matter from road traffic: a review.

              While emissions control regulation has led to a substantial reduction in exhaust emissions from road traffic, currently non-exhaust emissions from road vehicles are unabated. These include particles from brake wear, tyre wear, road surface abrasion and resuspension in the wake of passing traffic. Quantification of the magnitude of such emissions is problematic both in the laboratory and the field and the latter depends heavily upon a knowledge of the physical and chemical properties of non-exhaust particles. This review looks at each source in turn, reviewing the available information on the source materials and particles derived from them in laboratory studies. In a final section, some of the key publications dealing with measurements in road tunnels and the roadside environment are reviewed. It is concluded that with the exception of brake dust particles which may be identified from their copper (Cu) and antimony (Sb) content, unequivocal identification of particles from other sources is likely to prove extremely difficult, either because of the lack of suitable tracer elements or compounds, or because of the interactions between sources prior to the emission process. Even in the case of brake dust, problems will arise in distinguishing directly emitted particles from those arising from resuspension of deposited brake dust from the road surface, or that derived from entrainment of polluted roadside soils, either directly or as a component of road surface dust.
                Bookmark

                Author and article information

                Contributors
                +390032786597 , theodoros.grigoratos@jrc.ec.europa.eu
                Journal
                Environ Sci Pollut Res Int
                Environ Sci Pollut Res Int
                Environmental Science and Pollution Research International
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0944-1344
                1614-7499
                17 October 2014
                17 October 2014
                2015
                : 22
                : 2491-2504
                Affiliations
                European Commission, Joint Research Centre, Sustainable Transport Unit (STU), Institute for Energy and Transport (IET), Via E Fermi 2749, 21027 Ispra, Italy
                Author notes

                Responsible editor: Constantini Samara

                Article
                3696
                10.1007/s11356-014-3696-8
                4315878
                25318420
                2a664ec4-0bb0-4de4-8941-200af1a3af58
                © The Author(s) 2014

                Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

                History
                : 16 July 2014
                : 6 October 2014
                Categories
                Review Article
                Custom metadata
                © Springer-Verlag Berlin Heidelberg 2015

                General environmental science
                non-exhaust emissions,brake wear particles,size distribution,chemical composition,emission factors,health relevance

                Comments

                Comment on this article