14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Serologic and Molecular Evidence of Vaccinia Virus Circulation among Small Mammals from Different Biomes, Brazil

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vaccinia virus (VACV) is a zoonotic agent that causes a disease called bovine vaccinia, which is detected mainly in milking cattle and humans in close contact with these animals. Even though many aspects of VACV infection have been described, much is still unknown about its circulation in the environment and its natural hosts/reservoirs. To investigate the presence of Orthopoxvirus antibodies or VACV DNA, we captured small rodents and marsupials in 3 areas of Minas Gerais state, Brazil, and tested their samples in a laboratory. A total of 336 animals were tested; positivity ranged from 18.1% to 25.5% in the 3 studied regions located in different biomes, including the Atlantic Forest and the Cerrado. Analysis of nucleotide sequences indicated co-circulation of VACV groups I and II. Our findings reinforce the possible role played by rodents and marsupials in VACV maintenance and its transmission chain.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Zoonotic poxviruses

          Poxviruses compromise a group of long known important pathogens including some zoonotic members affecting lifestock animals and humans. While whole genome sequence analysis started to shed light into the molecular mechanisms underlying host cell infection, viral replication as well as virulence, our understanding of poxvirus maintenance in nature and their transmission to humans is still poor. During the last two decades, reports on emerging human monkeypox outbreaks in Africa and North America, the increasing number of cowpox virus infections in cats, exotic animals and humans and cases of vaccinia virus infections in humans in South America and India reminded us that – beside the eradicated smallpox virus – there are other poxviruses that can cause harm to men. We start to learn that the host range of some poxviruses is way broader than initially thought and that mainly rodents seem to function as virus reservoir. The following review is aiming to provide an up-to-date overview on the epidemiology of zoonotic poxviruses, emphasizing orthopoxviruses. By outlining the current knowledge of poxvirus transmission, we hope to raise the awareness about modes of acquisition of infections and their proper diagnosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An emergent poxvirus from humans and cattle in Rio de Janeiro State: Cantagalo virus may derive from Brazilian smallpox vaccine.

            The biological properties of poxvirus isolates from skin lesions on dairy cows and milkers during recent exanthem episodes in Cantagalo County, Rio de Janeiro State, Brazil, were more like vaccinia virus (VV) than cowpox virus. PCR amplification of the hemagglutinin (HA) gene substantiated the isolate classification as an Old World orthopoxvirus, and alignment of the HA sequences with those of other orthopoxviruses indicated that all the isolates represented a single strain of VV, which we have designated Cantagalo virus (CTGV). HA sequences of the Brazilian smallpox vaccine strain (VV-IOC), used over 20 years ago, and CTGV showed 98.2% identity; phylogeny inference of CTGV, VV-IOC, and 12 VV strains placed VV-IOC and CTGV together in a distinct clade. Viral DNA restriction patterns and protein profiles showed a few differences between VV-IOC and CTGV. Together, the data suggested that CTGV may have derived from VV-IOC by persisting in an indigenous animal(s), accumulating polymorphisms, and now emerging in cattle and milkers as CTGV. CTGV may represent the first case of long-term persistence of vaccinia in the New World. Copyright 2000 Academic Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Poxvirus pathogenesis.

              Poxviruses are a highly successful family of pathogens, with variola virus, the causative agent of smallpox, being the most notable member. Poxviruses are unique among animal viruses in several respects. First, owing to the cytoplasmic site of virus replication, the virus encodes many enzymes required either for macromolecular precursor pool regulation or for biosynthetic processes. Second, these viruses have a very complex morphogenesis, which involves the de novo synthesis of virus-specific membranes and inclusion bodies. Third, and perhaps most surprising of all, the genomes of these viruses encode many proteins which interact with host processes at both the cellular and systemic levels. For example, a viral homolog of epidermal growth factor is active in vaccinia virus infections of cultured cells, rabbits, and mice. At least five virus proteins with homology to the serine protease inhibitor family have been identified and one, a 38-kDa protein encoded by cowpox virus, is thought to block a host pathway for generating a chemotactic substance. Finally, a protein which has homology with complement components interferes with the activation of the classical complement pathway. Poxviruses infect their hosts by all possible routes: through the skin by mechanical means (e.g., molluscum contagiosum infections of humans), via the respiratory tract (e.g., variola virus infections of humans), or by the oral route (e.g., ectromelia virus infection of the mouse). Poxvirus infections, in general, are acute, with no strong evidence for latent, persistent, or chronic infections. They can be localized or systemic. Ectromelia virus infection of the laboratory mouse can be systemic but inapparent with no mortality and little morbidity, or highly lethal with death in 10 days. On the other hand, molluscum contagiosum virus replicates only in the stratum spinosum of the human epidermis, with little or no involvement of the dermis, and does not spread systemically from the site of infection. The host response to infection is progressive and multifactorial. Early in the infection process, interferons, the alternative pathway of complement activation, inflammatory cells, and natural killer cells may contribute to slowing the spread of the infection. The cell-mediated response involving learned cytotoxic T lymphocytes and delayed-type hypersensitivity components appears to be the most important in recovery from infection. A significant role for specific antiviral antibody and antibody-dependent cell-mediated cytotoxicity has yet to be demonstrated in recovery from a primary infection, but these responses are thought to be important in preventing reinfection.
                Bookmark

                Author and article information

                Journal
                Emerg Infect Dis
                Emerging Infect. Dis
                EID
                Emerging Infectious Diseases
                Centers for Disease Control and Prevention
                1080-6040
                1080-6059
                June 2017
                : 23
                : 6
                : 931-938
                Affiliations
                [1]Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (J.B. Miranda, I.A. Borges, S.P.S. Campos, F.N. Vieira, T.M.F de Ázara, F.A. Marques, G.B. Costa, A.P.M.F. Luis, J.S. de Oliveira, P.C.P. Ferreira, C.A. Bonjardim, A.E. Eiras, J.S. Abrahão, E.G. Kroon, B.P. Drumond, A.P. Paglia, G.D.S. Trindade);
                [2]Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais, Rio Pomba, Brazil (S.L.M. da Silva)
                Author notes
                Address for correspondence: Giliane de S. Trindade, Laboratório de Vírus, Instituto de Ciências Biológicas, sala 258, Universidade Federal de Minas Gerais. Avenida Antônio Carlos, 6627 - Pampulha - Belo Horizonte, Minas Gerais, Brazil, CEP 31270-901; email: gitrindade@ 123456yahoo.com.br
                Article
                16-1643
                10.3201/eid2306.161643
                5443434
                28518030
                2a6ae7ca-e1e1-43f9-bfb2-27bf06441aa0
                History
                Categories
                Research
                Research
                Serologic and Molecular Evidence of Vaccinia Virus Circulation among Small Mammals from Different Biomes, Brazil

                Infectious disease & Microbiology
                vaccinia virus,vacv,orthopoxvirus,bovine vaccinia,rodents,marsupials,hosts,viral ecology,viruses,brazil

                Comments

                Comment on this article