11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Root hairs: development, growth and evolution at the plant-soil interface

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: not found
          • Article: not found

          Regulation and function of root exudates

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reactive oxygen species produced by NADPH oxidase regulate plant cell growth.

            Cell expansion is a central process in plant morphogenesis, and the elongation of roots and root hairs is essential for uptake of minerals and water from the soil. Ca2+ influx from the extracellular store is required for (and sets the rates of) cell elongation in roots. Arabidopsis thaliana rhd2 mutants are defective in Ca2+ uptake and consequently cell expansion is compromised--rhd2 mutants have short root hairs and stunted roots. To determine the regulation of Ca2+ acquisition in growing root cells we show here that RHD2 is an NADPH oxidase, a protein that transfers electrons from NADPH to an electron acceptor leading to the formation of reactive oxygen species (ROS). We show that ROS accumulate in growing wild-type (WT) root hairs but their levels are markedly decreased in rhd2 mutants. Blocking the activity of the NADPH oxidase with diphenylene iodonium (DPI) inhibits ROS formation and phenocopies Rhd2-. Treatment of rhd2 roots with ROS partly suppresses the mutant phenotype and stimulates the activity of plasma membrane hyperpolarization-activated Ca2+ channels, the predominant root Ca2+ acquisition system. This indicates that NADPH oxidases control development by making ROS that regulate plant cell expansion through the activation of Ca2+ channels.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Coordinating nodule morphogenesis with rhizobial infection in legumes.

              The formation of nitrogen-fixing nodules on legumes requires an integration of infection by rhizobia at the root epidermis and the initiation of cell division in the cortex, several cell layers away from the sites of infection. Several recent developments have added to our understanding of the signaling events in the epidermis associated with the perception of rhizobial nodulation factors and the role of plant hormones in the activation of cell division leading to nodule morphogenesis. This review focuses on the tissue-specific nature of the developmental processes associated with nodulation and the mechanisms by which these processes are coordinated during the formation of a nodule.
                Bookmark

                Author and article information

                Journal
                Plant and Soil
                Plant Soil
                Springer Nature America, Inc
                0032-079X
                1573-5036
                September 2011
                June 23 2011
                September 2011
                : 346
                : 1-2
                : 1-14
                Article
                10.1007/s11104-011-0845-4
                2a881e8e-2739-453d-9f77-152ac4e7eac1
                © 2011
                History

                Comments

                Comment on this article