25
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative effectiveness of BNT162b2 versus mRNA-1273 covid-19 vaccine boosting in England: matched cohort study in OpenSAFELY-TPP

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          To compare the effectiveness of the BNT162b2 mRNA (Pfizer-BioNTech) and mRNA-1273 (Moderna) covid-19 vaccines during the booster programme in England.

          Design

          Matched cohort study, emulating a comparative effectiveness trial.

          Setting

          Linked primary care, hospital, and covid-19 surveillance records available within the OpenSAFELY-TPP research platform, covering a period when the SARS-CoV-2 delta and omicron variants were dominant.

          Participants

          3 237 918 adults who received a booster dose of either vaccine between 29 October 2021 and 25 February 2022 as part of the national booster programme in England and who received a primary course of BNT162b2 or ChAdOx1.

          Intervention

          Vaccination with either BNT162b2 or mRNA-1273 as a booster vaccine dose.

          Main outcome measures

          Recorded SARS-CoV-2 positive test, covid-19 related hospital admission, covid-19 related death, and non-covid-19 related death at 20 weeks after receipt of the booster dose.

          Results

          1 618 959 people were matched in each vaccine group, contributing a total 64 546 391 person weeks of follow-up. The 20 week risks per 1000 for a positive SARS-CoV-2 test were 164.2 (95% confidence interval 163.3 to 165.1) for BNT162b2 and 159.9 (159.0 to 160.8) for mRNA-1273; the hazard ratio comparing mRNA-1273 with BNT162b2 was 0.95 (95% confidence interval 0.95 to 0.96). The 20 week risks per 1000 for hospital admission with covid-19 were 0.75 (0.71 to 0.79) for BNT162b2 and 0.65 (0.61 to 0.69) for mRNA-1273; the hazard ratio was 0.89 (0.82 to 0.95). Covid-19 related deaths were rare: the 20 week risks per 1000 were 0.028 (0.021 to 0.037) for BNT162b2 and 0.024 (0.018 to 0.033) for mRNA-1273; hazard ratio 0.83 (0.58 to 1.19). Comparative effectiveness was generally similar within subgroups defined by the primary course vaccine brand, age, previous SARS-CoV-2 infection, and clinical vulnerability. Relative benefit was similar when vaccines were compared separately in the delta and omicron variant eras.

          Conclusions

          This matched observational study of adults estimated a modest benefit of booster vaccination with mRNA-1273 compared with BNT162b2 in preventing positive SARS-CoV-2 tests and hospital admission with covid-19 20 weeks after vaccination, during a period of delta followed by omicron variant dominance.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Safety of the BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Setting

          Background Preapproval trials showed that messenger RNA (mRNA)–based vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had a good safety profile, yet these trials were subject to size and patient-mix limitations. An evaluation of the safety of the BNT162b2 mRNA vaccine with respect to a broad range of potential adverse events is needed. Methods We used data from the largest health care organization in Israel to evaluate the safety of the BNT162b2 mRNA vaccine. For each potential adverse event, in a population of persons with no previous diagnosis of that event, we individually matched vaccinated persons to unvaccinated persons according to sociodemographic and clinical variables. Risk ratios and risk differences at 42 days after vaccination were derived with the use of the Kaplan–Meier estimator. To place these results in context, we performed a similar analysis involving SARS-CoV-2–infected persons matched to uninfected persons. The same adverse events were studied in the vaccination and SARS-CoV-2 infection analyses. Results In the vaccination analysis, the vaccinated and control groups each included a mean of 884,828 persons. Vaccination was most strongly associated with an elevated risk of myocarditis (risk ratio, 3.24; 95% confidence interval [CI], 1.55 to 12.44; risk difference, 2.7 events per 100,000 persons; 95% CI, 1.0 to 4.6), lymphadenopathy (risk ratio, 2.43; 95% CI, 2.05 to 2.78; risk difference, 78.4 events per 100,000 persons; 95% CI, 64.1 to 89.3), appendicitis (risk ratio, 1.40; 95% CI, 1.02 to 2.01; risk difference, 5.0 events per 100,000 persons; 95% CI, 0.3 to 9.9), and herpes zoster infection (risk ratio, 1.43; 95% CI, 1.20 to 1.73; risk difference, 15.8 events per 100,000 persons; 95% CI, 8.2 to 24.2). SARS-CoV-2 infection was associated with a substantially increased risk of myocarditis (risk ratio, 18.28; 95% CI, 3.95 to 25.12; risk difference, 11.0 events per 100,000 persons; 95% CI, 5.6 to 15.8) and of additional serious adverse events, including pericarditis, arrhythmia, deep-vein thrombosis, pulmonary embolism, myocardial infarction, intracranial hemorrhage, and thrombocytopenia. Conclusions In this study in a nationwide mass vaccination setting, the BNT162b2 vaccine was not associated with an elevated risk of most of the adverse events examined. The vaccine was associated with an excess risk of myocarditis (1 to 5 events per 100,000 persons). The risk of this potentially serious adverse event and of many other serious adverse events was substantially increased after SARS-CoV-2 infection. (Funded by the Ivan and Francesca Berkowitz Family Living Laboratory Collaboration at Harvard Medical School and Clalit Research Institute.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israel: an observational study

            Background Many countries are experiencing a resurgence of COVID-19, driven predominantly by the delta (B.1.617.2) variant of SARS-CoV-2. In response, these countries are considering the administration of a third dose of mRNA COVID-19 vaccine as a booster dose to address potential waning immunity over time and reduced effectiveness against the delta variant. We aimed to use the data repositories of Israel's largest health-care organisation to evaluate the effectiveness of a third dose of the BNT162b2 mRNA vaccine for preventing severe COVID-19 outcomes. Methods Using data from Clalit Health Services, which provides mandatory health-care coverage for over half of the Israeli population, individuals receiving a third vaccine dose between July 30, 2020, and Sept 23, 2021, were matched (1:1) to demographically and clinically similar controls who did not receive a third dose. Eligible participants had received the second vaccine dose at least 5 months before the recruitment date, had no previous documented SARS-CoV-2 infection, and had no contact with the health-care system in the 3 days before recruitment. Individuals who are health-care workers, live in long-term care facilities, or are medically confined to their homes were excluded. Primary outcomes were COVID-19-related admission to hospital, severe disease, and COVID-19-related death. The third dose effectiveness for each outcome was estimated as 1 – risk ratio using the Kaplan-Meier estimator. Findings 1 158 269 individuals were eligible to be included in the third dose group. Following matching, the third dose and control groups each included 728 321 individuals. Participants had a median age of 52 years (IQR 37–68) and 51% were female. The median follow-up time was 13 days (IQR 6–21) in both groups. Vaccine effectiveness evaluated at least 7 days after receipt of the third dose, compared with receiving only two doses at least 5 months ago, was estimated to be 93% (231 events for two doses vs 29 events for three doses; 95% CI 88–97) for admission to hospital, 92% (157 vs 17 events; 82–97) for severe disease, and 81% (44 vs seven events; 59–97) for COVID-19-related death. Interpretation Our findings suggest that a third dose of the BNT162b2 mRNA vaccine is effective in protecting individuals against severe COVID-19-related outcomes, compared with receiving only two doses at least 5 months ago. Funding The Ivan and Francesca Berkowitz Family Living Laboratory Collaboration at Harvard Medical School and Clalit Research Institute.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial

              Background Few data exist on the comparative safety and immunogenicity of different COVID-19 vaccines given as a third (booster) dose. To generate data to optimise selection of booster vaccines, we investigated the reactogenicity and immunogenicity of seven different COVID-19 vaccines as a third dose after two doses of ChAdOx1 nCov-19 (Oxford–AstraZeneca; hereafter referred to as ChAd) or BNT162b2 (Pfizer–BioNtech, hearafter referred to as BNT). Methods COV-BOOST is a multicentre, randomised, controlled, phase 2 trial of third dose booster vaccination against COVID-19. Participants were aged older than 30 years, and were at least 70 days post two doses of ChAd or at least 84 days post two doses of BNT primary COVID-19 immunisation course, with no history of laboratory-confirmed SARS-CoV-2 infection. 18 sites were split into three groups (A, B, and C). Within each site group (A, B, or C), participants were randomly assigned to an experimental vaccine or control. Group A received NVX-CoV2373 (Novavax; hereafter referred to as NVX), a half dose of NVX, ChAd, or quadrivalent meningococcal conjugate vaccine (MenACWY) control (1:1:1:1). Group B received BNT, VLA2001 (Valneva; hereafter referred to as VLA), a half dose of VLA, Ad26.COV2.S (Janssen; hereafter referred to as Ad26) or MenACWY (1:1:1:1:1). Group C received mRNA1273 (Moderna; hereafter referred to as m1273), CVnCov (CureVac; hereafter referred to as CVn), a half dose of BNT, or MenACWY (1:1:1:1). Participants and all investigatory staff were blinded to treatment allocation. Coprimary outcomes were safety and reactogenicity and immunogenicity of anti-spike IgG measured by ELISA. The primary analysis for immunogenicity was on a modified intention-to-treat basis; safety and reactogenicity were assessed in the intention-to-treat population. Secondary outcomes included assessment of viral neutralisation and cellular responses. This trial is registered with ISRCTN, number 73765130. Findings Between June 1 and June 30, 2021, 3498 people were screened. 2878 participants met eligibility criteria and received COVID-19 vaccine or control. The median ages of ChAd/ChAd-primed participants were 53 years (IQR 44–61) in the younger age group and 76 years (73–78) in the older age group. In the BNT/BNT-primed participants, the median ages were 51 years (41–59) in the younger age group and 78 years (75–82) in the older age group. In the ChAd/ChAD-primed group, 676 (46·7%) participants were female and 1380 (95·4%) were White, and in the BNT/BNT-primed group 770 (53·6%) participants were female and 1321 (91·9%) were White. Three vaccines showed overall increased reactogenicity: m1273 after ChAd/ChAd or BNT/BNT; and ChAd and Ad26 after BNT/BNT. For ChAd/ChAd-primed individuals, spike IgG geometric mean ratios (GMRs) between study vaccines and controls ranged from 1·8 (99% CI 1·5–2·3) in the half VLA group to 32·3 (24·8–42·0) in the m1273 group. GMRs for wild-type cellular responses compared with controls ranged from 1·1 (95% CI 0·7–1·6) for ChAd to 3·6 (2·4–5·5) for m1273. For BNT/BNT-primed individuals, spike IgG GMRs ranged from 1·3 (99% CI 1·0–1·5) in the half VLA group to 11·5 (9·4–14·1) in the m1273 group. GMRs for wild-type cellular responses compared with controls ranged from 1·0 (95% CI 0·7–1·6) for half VLA to 4·7 (3·1–7·1) for m1273. The results were similar between those aged 30–69 years and those aged 70 years and older. Fatigue and pain were the most common solicited local and systemic adverse events, experienced more in people aged 30–69 years than those aged 70 years or older. Serious adverse events were uncommon, similar in active vaccine and control groups. In total, there were 24 serious adverse events: five in the control group (two in control group A, three in control group B, and zero in control group C), two in Ad26, five in VLA, one in VLA-half, one in BNT, two in BNT-half, two in ChAd, one in CVn, two in NVX, two in NVX-half, and one in m1273. Interpretation All study vaccines boosted antibody and neutralising responses after ChAd/ChAd initial course and all except one after BNT/BNT, with no safety concerns. Substantial differences in humoral and cellular responses, and vaccine availability will influence policy choices for booster vaccination. Funding UK Vaccine Taskforce and National Institute for Health Research.
                Bookmark

                Author and article information

                Contributors
                Role: epidemiologist
                Role: senior research associate
                Role: research fellow
                Role: professor
                Role: professor
                Role: research fellow
                Role: senior lecturer
                Role: postdoctoral researcher
                Role: epidemiologist
                Role: researcher
                Role: honorary clinical researcher
                Role: policy lead
                Role: honorary clinical researcher
                Role: chief technical officer
                Role: professor
                Role: professor
                Role: professor
                Journal
                BMJ
                BMJ
                BMJ-UK
                bmj
                The BMJ
                BMJ Publishing Group Ltd.
                0959-8138
                1756-1833
                2023
                15 March 2023
                15 March 2023
                : 380
                : e072808
                Affiliations
                [1 ]The Bennett Institute for Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
                [2 ]Population Health Sciences, University of Bristol, Bristol, UK
                [3 ]NIHR Bristol Biomedical Research Centre, Bristol, UK
                [4 ]London School of Hygiene and Tropical Medicine, London, UK
                [5 ]MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
                [6 ]CAUSALab, Harvard T.H. Chan School of Public Health, Boston, MA, USA
                [7 ]Departments of Epidemiology and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
                [8 ]Health Data Research UK South West, Bristol, UK
                Author notes
                Correspondence to: W J Hulme william.hulme@ 123456phc.ox.ac.uk (or @wjchulme on Twitter)
                Author information
                https://orcid.org/0000-0002-9162-4999
                Article
                bmj-2022-072808.R2 hulw072808
                10.1136/bmj-2022-072808
                10014664
                36921925
                2a9f40c7-66a9-4447-b5fe-028d24184184
                © Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/.

                History
                : 08 March 2023
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100010269, Wellcome Trust;
                Funded by: FundRef http://dx.doi.org/10.13039/100014013, UK Research and Innovation;
                Categories
                Research
                2474

                Medicine
                Medicine

                Comments

                Comment on this article