4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Potential bioactive molecules from natural products to combat against coronavirus

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Covid-19 is terribly spreading around the globes and there is no stoppage. It is causing mass destruction in mankind allowing them to lock inside home to contain the disease. At present, there are no remedial medicines, drugs, or vaccines available in the market. Researchers are trying their best level to produce drugs to fight againts the disease. Various efforts are being considered by using different directions of scientific knowledge and technologies on treating the disease. The existing antiviral drugs such as lopinavir/ritonavir, pitavastatin, nelfinavir, perampanel, and praziquantel are being administered as remedies of covid-19 patients. Unfortunately, none of these drugs works absolutely against the current pandemic. Therefore, bioactive molecules from plants, animals, and microorganisms could be a better option to treat against the covid-19 and its family. Plants can treat many diseases due to the presence of bioactive molecules and their antiviral properties. Presence of secondary metabolites such as flavonoids, alkaloids, terpenoids, polyphenols, curcumin, kaempferol, catechin, naringenin, quercetin, apigenin-7-glucoside, luteolin-7-glucoside, demethoxycurcumin, oleuropein, and epigallocatechin can fight against the coronavirus including covid-19. The listed plants such as litchi seeds, Houttuynia cordata, Chinese Rhubarb extracts, beta-sistosterol from Isatis indigotica root extract have capacity to obstruct the enzymatic activity of SARS. In this article, we have highlighted the bioactive molecules from different plants, animals, and microorganism and their potential activity against the coronavirus. It is a need of the hour to come together to explore more on such bioactive compounds of plants, animals and other microorganism to fight against the covid-19.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China

          Summary Background A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. Methods All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by WHO and the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. Findings By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0–58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0–13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. Interpretation The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. Funding Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Novel Coronavirus from Patients with Pneumonia in China, 2019

            Summary In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A pneumonia outbreak associated with a new coronavirus of probable bat origin

              Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats 1–4 . Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans 5–7 . Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV.
                Bookmark

                Author and article information

                Contributors
                disco.iitg@gmail.com
                kbs_bot@rediffmail.com
                Journal
                ADV TRADIT MED (ADTM)
                Advances in Traditional Medicine
                Springer Singapore (Singapore )
                2662-4052
                2662-4060
                15 September 2020
                : 1-12
                Affiliations
                [1 ]GRID grid.459438.7, ISNI 0000 0004 1800 9601, Department of Post Harvest Technology, College of Horticulture and Forestry, , Central Agricultural University, ; Pasighat, Arunachal Pradesh 791102 India
                [2 ]GRID grid.460921.8, Department of Botany, School of Applied Sciences, , Centurion University of Technology and Management, ; Bhubaneswar, Odisha 752050 India
                [3 ]GRID grid.459438.7, ISNI 0000 0004 1800 9601, Department of Vegetable Science, College of Horticulture and Forestry, , Central Agricultural University, ; Pasighat, 791102 Arunachal Pradesh India
                [4 ]GRID grid.418808.d, ISNI 0000 0004 1792 1607, Environment and Sustainability Department, , CSIR- Institute of Minerals and Materials Technology, ; Bhubaneswar, 751013 India
                [5 ]GRID grid.459438.7, ISNI 0000 0004 1800 9601, Department of Basic Sciences and Humanities, College of Horticulture and Forestry, , Central Agricultural University, ; Pasighat, Arunachal Pradesh 791102 India
                Author information
                http://orcid.org/0000-0002-7580-2345
                Article
                496
                10.1007/s13596-020-00496-w
                7490776
                2aa5943d-f3e8-449d-afda-fd2970a3f177
                © Institute of Korean Medicine, Kyung Hee University 2020

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 7 July 2020
                : 20 August 2020
                Categories
                Review

                covid-19,bioactive molecules,pandemic,plant extracts,coronavirus

                Comments

                Comment on this article