0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of alien plants in Turkey assessed by the Generic Impact Scoring System

      , ,

      NeoBiota

      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this paper, we present the impact categorizations of 51 alien plant species in Turkey, which were determined using the Generic Impact Scoring System (GISS). The evidence on environmental and socioeconomic impacts of these alien species was searched in literature. Impacts were classified into 12 categories (six for environmental and six for socioeconomic) and, within each category, the impact was assessed on a six degree scale. Environmental impacts were recorded for 80% of the species and mostly concern ecosystem processes (changes in nutrient or water availability and disturbance regimes), while socioeconomic impacts, identified for 78% of the species assessed, are typically associated with agricultural production or human health. Summed scores of individual species across categories of environmental and socioeconomic impacts were not significantly correlated. By taking into account the actual distribution of the assessed species, we evaluated the regional distribution of (potential) impacts in Turkey. The Black Sea region harbours the highest number of species with impacts (34 species, i.e. 67% of the total assessed for the whole country), 28 species were recorded in the Marmara, 21 in the Mediterranean, 17 in the Aegean and 12 in each of the South East Anatolia, Central Anatolia and East Anatolia regions. The species that have negative impact on forestry are only found in three regions. Altogether 21 species are agricultural weeds, but we only found evidence of a minor socioeconomic impact for some of them. Determining the impacts based on specific criteria (i) provides basis for objective risk assessment of plant invasions in Turkey, (ii) can be taken as early warning to combat these plants and (iii) contributes to the growing body of evidence of the impacts of alien plant species.

          Related collections

          Most cited references 21

          • Record: found
          • Abstract: not found
          • Article: not found

          Ecosystem Consequences of Biological Invasions

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Some alien birds have as severe an impact as the most effectual alien mammals in Europe

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Black locust ( Robinia pseudoacacia ) beloved and despised: A story of an invasive tree in Central Europe

              Robinia pseudoacacia , invaded many countries a long time ago and is now a common part of the Central European landscape. Positive economic but negative environmental impacts of Robinia result in conflicts of interest between nature conservation, forestry, urban landscaping, beekeepers and the public when defining management priorities. Because current legislation will determine the future distribution of Robinia in the landscape, a comprehensive view of this species is necessary. Although this species is well studied, most of the scientific papers deal with the economic aspects. Other information is published in local journals or reports. Therefore we reviewed the ecological and socio-economic impact of Robinia placing particular emphasis on the species’ history, vegetation ecology, invasiveness and management. In Central Europe, Robinia is limited climatically by late spring frost combined with a short vegetation period, soil hypoxia, shade and frequent major disturbances. The long historical tradition of using Robinia for afforestation has resulted in its popularity as a widespread forest tree and it being an important part of the economy in some countries. The main reasons are its fast growth, valuable and resistant wood, suitability for amelioration, reclamation of disturbed sites and erosion control, honey-making and recently dendromass production. On the other hand, a side-effect of planting this nitrogen-fixing pioneer tree, very tolerant of the nature of the substrate, is its propagation and spread, which pose a problem for nature conservation. Robinia is considered invasive, threatening especially dry and semi-dry grasslands, some of the most species-rich and endangered types of habitat in the region, causing extinction of many endangered light-demanding plants and invertebrates due to changes in light regime, microclimate and soil conditions. Other often invaded habitats include open dry forests and shrubland, alluvial habitats, agrarian landscapes, urban and industrial environments and disturbed sites, e.g. post-fire sites, forest clearings or degraded forestry plantations. Without forestry, black locust abundance would decrease during succession in forests with highly competitive and shade tolerant trees and in mature forests it occurs only as admixture of climax trees. The limited pool of native woody species, lack of serious natural enemies and a dense cover of grasses and sedges can suppress forest succession and favour the development of Robinia monodominant stands over 70 years old. A stratified approach, which combines both tolerance in some areas and strict eradication at valuable sites, provides the best option for achieving a sustainable coexistence of Robinia with people and nature.
                Bookmark

                Author and article information

                Journal
                NeoBiota
                NB
                Pensoft Publishers
                1314-2488
                1619-0033
                June 27 2018
                June 27 2018
                : 39
                : 31-51
                Article
                10.3897/neobiota.39.23598
                © 2018

                Comments

                Comment on this article