14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptome analyses reveal molecular mechanism underlying tapping panel dryness of rubber tree ( Hevea brasiliensis)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tapping panel dryness (TPD) is a serious threat to natural rubber yields from rubber trees, but the molecular mechanisms underlying TPD remain poorly understood. To identify TPD-related genes and reveal these molecular mechanisms, we sequenced and compared the transcriptomes of bark between healthy and TPD trees. In total, 57,760 assembled genes were obtained and analyzed in details. In contrast to healthy rubber trees, 5652 and 2485 genes were up- or downregulated, respectively, in TPD trees. The TPD-related genes were significantly enriched in eight GO terms and five KEGG pathways and were closely associated with ROS metabolism, programmed cell death and rubber biosynthesis. Our results suggest that rubber tree TPD is a complex process involving many genes. The observed lower rubber yield from TPD trees might result from lower isopentenyl diphosphate (IPP) available for rubber biosynthesis and from downregulation of the genes in post-IPP steps of rubber biosynthesis pathway. Our results not only extend our understanding of the complex molecular events involved in TPD but also will be useful for developing effective measures to control TPD of rubber trees.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Plant ABC Transporters.

          ABC transporters constitute one of the largest protein families found in all living organisms. ABC transporters are driven by ATP hydrolysis and can act as exporters as well as importers. The plant genome encodes for more than 100 ABC transporters, largely exceeding that of other organisms. In Arabidopsis, only 22 out of 130 have been functionally analyzed. They are localized in most membranes of a plant cell such as the plasma membrane, the tonoplast, chloroplasts, mitochondria and peroxisomes and fulfill a multitude of functions. Originally identified as transporters involved in detoxification processes, they have later been shown to be required for organ growth, plant nutrition, plant development, response to abiotic stresses, pathogen resistance and the interaction of the plant with its environment. To fulfill these roles they exhibit different substrate specifies by e.g. depositing surface lipids, accumulating phytate in seeds, and transporting the phytohormones auxin and abscisic acid. The aim of this review is to give an insight into the functions of plant ABC transporters and to show their importance for plant development and survival.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.)

            Background In rubber tree, bark is one of important agricultural and biological organs. However, the molecular mechanism involved in the bark formation and development in rubber tree remains largely unknown, which is at least partially due to lack of bark transcriptomic and genomic information. Therefore, it is necessary to carried out high-throughput transcriptome sequencing of rubber tree bark to generate enormous transcript sequences for the functional characterization and molecular marker development. Results In this study, more than 30 million sequencing reads were generated using Illumina paired-end sequencing technology. In total, 22,756 unigenes with an average length of 485 bp were obtained with de novo assembly. The similarity search indicated that 16,520 and 12,558 unigenes showed significant similarities to known proteins from NCBI non-redundant and Swissprot protein databases, respectively. Among these annotated unigenes, 6,867 and 5,559 unigenes were separately assigned to Gene Ontology (GO) and Clusters of Orthologous Group (COG). When 22,756 unigenes searched against the Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG) database, 12,097 unigenes were assigned to 5 main categories including 123 KEGG pathways. Among the main KEGG categories, metabolism was the biggest category (9,043, 74.75%), suggesting the active metabolic processes in rubber tree bark. In addition, a total of 39,257 EST-SSRs were identified from 22,756 unigenes, and the characterizations of EST-SSRs were further analyzed in rubber tree. 110 potential marker sites were randomly selected to validate the assembly quality and develop EST-SSR markers. Among 13 Hevea germplasms, PCR success rate and polymorphism rate of 110 markers were separately 96.36% and 55.45% in this study. Conclusion By assembling and analyzing de novo transcriptome sequencing data, we reported the comprehensive functional characterization of rubber tree bark. This research generated a substantial fraction of rubber tree transcriptome sequences, which were very useful resources for gene annotation and discovery, molecular markers development, genome assembly and annotation, and microarrays development in rubber tree. The EST-SSR markers identified and developed in this study will facilitate marker-assisted selection breeding in rubber tree. Moreover, this study also supported that transcriptome analysis based on Illumina paired-end sequencing is a powerful tool for transcriptome characterization and molecular marker development in non-model species, especially those with large and complex genomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase.

              Plant isoprenoids represent a heterogeneous group of compounds which play essential roles not only in growth and development, but also in the interaction of plants with their environment. Higher plants contain two pathways for the biosynthesis of isoprenoids: the mevalonate pathway, located in the cytosol/endoplasmic reticulum, and the recently discovered mevalonate-independent pathway (Rohmer pathway), located in the plastids. In order to evaluate the function of the Rohmer pathway in the regulation of the synthesis of plastidial isoprenoids, we have isolated a tomato cDNA encoding 1-deoxy-D-xylulose 5-phosphate synthase (DXS), the first enzyme of the pathway. We demonstrate in vivo activity and plastid targeting of plant DXS. Expression analysis of the tomato DXS gene indicates developmental and organ-specific regulation of mRNA accumulation and a strong correlation with carotenoid synthesis during fruit development. 1-Deoxy-D-xylulose feeding experiments, together with expression analysis of DXS and PSY1 (encoding the fruit-specific isoform of phytoene synthase) in wild-type and yellow flesh mutant fruits, indicate that DXS catalyses the first potentially regulatory step in carotenoid biosynthesis during early fruit ripening. Our results change the current view that PSY1 is the only regulatory enzyme in tomato fruit carotenogenesis, and point towards a coordinated role of both DXS and PSY1 in the control of fruit carotenoid synthesis.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                23 March 2016
                2016
                : 6
                : 23540
                Affiliations
                [1 ]Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Baodao Xincun , Danzhou, Hainan 571737, China
                [2 ]Tsinghua-Peking Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University , Tsinghua Park No. 1, Haidian District, Beijing 100084, China
                [3 ]State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University , No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep23540
                10.1038/srep23540
                4804210
                27005401
                2ae302c1-9702-49a3-8958-bc964c9e7fb3
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 22 September 2015
                : 04 March 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article