17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      van der Waals dispersion interactions in molecular materials: beyond pairwise additivity

      research-article
      a , b , b ,
      Chemical Science
      Royal Society of Chemistry

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this perspective we discuss recent advances in the understanding of collective and many-body van der Waals interactions and their role and impact for molecular materials.

          Abstract

          van der Waals (vdW) dispersion interactions are a key ingredient in the structure, stability, and response properties of many molecular materials and essential for us to be able to understand and design novel intricate molecular systems. Pairwise-additive models of vdW interactions are ubiquitous, but neglect their true quantum-mechanical many-body nature. In this perspective we focus on recent developments and applications of methods that can capture collective and many-body effects in vdW interactions. Highlighting a number of recent studies in this area, we demonstrate both the need for and usefulness of explicit many-body treatments for obtaining qualitative and quantitative accuracy for modelling molecular materials, with applications presented for small-molecule dimers, supramolecular host–guest complexes, and finally stability and polymorphism in molecular crystals.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: not found
          • Article: not found

          Generalized Gradient Approximation Made Simple.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids.

            The electron density, its gradient, and the Kohn-Sham orbital kinetic energy density are the local ingredients of a meta-generalized gradient approximation (meta-GGA). We construct a meta-GGA density functional for the exchange-correlation energy that satisfies exact constraints without empirical parameters. The exchange and correlation terms respect two paradigms: one- or two-electron densities and slowly varying densities, and so describe both molecules and solids with high accuracy, as shown by extensive numerical tests. This functional completes the third rung of "Jacob's ladder" of approximations, above the local spin density and GGA rungs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures

              With numerous new quantum chemistry methods being developed in recent years and the promise of even more new methods to be developed in the near future, it is clearly critical that highly accurate, well-balanced, reference data for many different atomic and molecular properties be available for the parametrization and validation of these methods. One area of research that is of particular importance in many areas of chemistry, biology, and material science is the study of noncovalent interactions. Because these interactions are often strongly influenced by correlation effects, it is necessary to use computationally expensive high-order wave function methods to describe them accurately. Here, we present a large new database of interaction energies calculated using an accurate CCSD(T)/CBS scheme. Data are presented for 66 molecular complexes, at their reference equilibrium geometries and at 8 points systematically exploring their dissociation curves; in total, the database contains 594 points: 66 at equilibrium geometries, and 528 in dissociation curves. The data set is designed to cover the most common types of noncovalent interactions in biomolecules, while keeping a balanced representation of dispersion and electrostatic contributions. The data set is therefore well suited for testing and development of methods applicable to bioorganic systems. In addition to the benchmark CCSD(T) results, we also provide decompositions of the interaction energies by means of DFT-SAPT calculations. The data set was used to test several correlated QM methods, including those parametrized specifically for noncovalent interactions. Among these, the SCS-MI-CCSD method outperforms all other tested methods, with a root-mean-square error of 0.08 kcal/mol for the S66 data set.
                Bookmark

                Author and article information

                Journal
                Chem Sci
                Chem Sci
                Chemical Science
                Royal Society of Chemistry
                2041-6520
                2041-6539
                1 June 2015
                30 March 2015
                : 6
                : 6
                : 3289-3301
                Affiliations
                [a ] The Cambridge Crystallographic Data Centre , 12 Union Road , Cambridge , CB2 1EZ , UK
                [b ] Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , Berlin 14195 , Germany . Email: tkatchen@ 123456fhi-berlin.mpg.de ; Tel: +49 3084134802
                Article
                c5sc00410a
                10.1039/c5sc00410a
                5514477
                28757994
                2af02cd8-e158-4545-af3b-87b48cfcb376
                This journal is © The Royal Society of Chemistry 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 Unported License ( http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 February 2015
                : 29 March 2015
                Categories
                Chemistry

                Comments

                Comment on this article