22
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Functional integration and the mind

      Synthese
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          The neural correlates of maternal and romantic love.

          Romantic and maternal love are highly rewarding experiences. Both are linked to the perpetuation of the species and therefore have a closely linked biological function of crucial evolutionary importance. Yet almost nothing is known about their neural correlates in the human. We therefore used fMRI to measure brain activity in mothers while they viewed pictures of their own and of acquainted children, and of their best friend and of acquainted adults as additional controls. The activity specific to maternal attachment was compared to that associated to romantic love described in our earlier study and to the distribution of attachment-mediating neurohormones established by other studies. Both types of attachment activated regions specific to each, as well as overlapping regions in the brain's reward system that coincide with areas rich in oxytocin and vasopressin receptors. Both deactivated a common set of regions associated with negative emotions, social judgment and 'mentalizing', that is, the assessment of other people's intentions and emotions. We conclude that human attachment employs a push-pull mechanism that overcomes social distance by deactivating networks used for critical social assessment and negative emotions, while it bonds individuals through the involvement of the reward circuitry, explaining the power of love to motivate and exhilarate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neural bases of binocular rivalry.

            During binocular rivalry, conflicting monocular images compete for access to consciousness in a stochastic, dynamical fashion. Recent human neuroimaging and psychophysical studies suggest that rivalry entails competitive interactions at multiple neural sites, including sites that retain eye-selective information. Rivalry greatly suppresses activity in the ventral pathway and attenuates visual adaptation to form and motion; nonetheless, some information about the suppressed stimulus reaches higher brain areas. Although rivalry depends on low-level inhibitory interactions, high-level excitatory influences promoting perceptual grouping and selective attention can extend the local dominance of a stimulus over space and time. Inhibitory and excitatory circuits considered within a hybrid model might account for the paradoxical properties of binocular rivalry and provide insights into the neural bases of visual awareness itself.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Perceptions as hypotheses.

              Perceptions may be compared with hypotheses in science. The methods of acquiring scientific knowledge provide a working paradigm for investigating processes of perception. Much as the information channels of instruments, such as radio telescopes, transmit signals which are processed according to various assumptions to give useful data, so neural signals are processed to give data for perception. To understand perception, the signal codes and the stored knowledge or assumptions used for deriving perceptual hypotheses must be discovered. Systematic perceptual errors are important clues for appreciating signal channel limitations, and for discovering hypothesis-generating procedures. Although this distinction between 'physiological' and 'cognitive' aspects of perception may be logically clear, it is in practice surprisingly difficult to establish which are responsible even for clearly established phenomena such as the classical distortion illusions. Experimental results are presented, aimed at distinguishing between and disconvering what happens when there is mismatch with the neural signal channel, and when neural signals are processed inappropriately for the current situation. This leads us to make some distinctions between perceptual and scientific hypotheses, which raise in a new form the problem: What are 'objects'?
                Bookmark

                Author and article information

                Journal
                Synthese
                Synthese
                Springer Nature
                0039-7857
                1573-0964
                November 12 2007
                September 26 2007
                : 159
                : 3
                : 315-328
                Article
                10.1007/s11229-007-9240-3
                2af08ad5-c58d-4946-a969-4edbf23455bc
                © 2007
                History

                Comments

                Comment on this article