24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extract of Polygonum cuspidatum Attenuates Diabetic Retinopathy by Inhibiting the High-Mobility Group Box-1 (HMGB1) Signaling Pathway in Streptozotocin-Induced Diabetic Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High-mobility group box-1 (HMGB1) is a well-known pro-inflammatory cytokine. We aimed to investigate the effect of the ethanol extract of the root of P. cuspidatum (PCE) on retinal inflammation in diabetic retinopathy. PCE (100 or 350 mg/kg/day) was administered to diabetic rats for 16 weeks, and hyperglycemia and body weight loss developed in the diabetic rats. The retinal expression levels of HMGB1 and receptor for advanced glycation end products (RAGE) and the activity of nuclear factor-kappa B (NF-κB) in the retina were examined. Additionally, a chromatin immunoprecipitation assay was performed to analyze the binding of NF-κB binding to the RAGE promoter in the diabetic retinas. The levels of HMGB1 and RAGE expression, NF-κB activity, and NF-κB binding to the RAGE promoter were increased in the diabetic retinas. However, treatment with PCE ameliorated the increases in HMGB1 and RAGE expression, and NF-κB activity in the retina. In addition, in diabetic rats, retinal vascular permeability and the loosening of the tight junctions were inhibited by PCE. These findings suggest that PCE has a preventative effect against diabetes-induced vascular permeability by inhibiting HMGB1-RAGE-NF-κB activation in diabetic retinas. The oral administration of PCE may significantly help to suppress the development of diabetic retinopathy in patients with diabetes.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found

          Is diabetic retinopathy an inflammatory disease?

          A Adamis (2002)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dipeptidyl peptidase IV inhibitor attenuates kidney injury in streptozotocin-induced diabetic rats.

            Dipeptidyl peptidase (DPP) IV inhibitors are probably beneficial for preventing diabetic complication and modulating glucagon-like peptide-1 receptor (GLP-1R) expression. The aim of this study was to determine whether the DPP IV inhibitor LAF237 (vildagliptin) has renoprotective qualities in streptozotocin-induced diabetic rats. Diabetic and nondiabetic rats were treated with an oral dose of 4 or 8 mg/kg/day LAF237 or placebo for 24 weeks, and renal injury was observed by light and electron microscopy. We also assessed DPP IV activity, active GLP-1 level, cAMP and 8-hydroxy-deoxyguanosine excretion, and GLP-1R, cleaved caspase 3, and transforming growth factor-β1 (TGF-β1) expression. LAF237 significantly decreased proteinuria, albuminuria, and urinary albumin/creatinine ratio, improved creatinine clearance, and dose-dependently inhibited interstitial expansion, glomerulosclerosis, and the thickening of the glomerular basement membrane in diabetic rats. It is noteworthy that LAF237 markedly down-regulated DPP IV activity and increased active GLP-1 levels, which probably prevented oxidative DNA damage and renal cell apoptosis by activating the GLP-1R and modulating cAMP. Renoprotection was also associated with a reduction in TGF-β1 overexpression. Our study suggests that DPP IV inhibitors may ameliorate diabetic nephropathy as well as reduce the overproduction of TGF-β1. The observed renoprotection is probably attributable to inhibition of DPP IV activity, mimicking of incretin action, and activation of the GLP-1R.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              AGEs, RAGE, and diabetic retinopathy.

              Diabetic retinopathy is a major diabetic complication with a highly complex etiology. Although there are many pathways involved, it has become established that chronic exposure of the retina to hyperglycemia gives rise to accumulation of advanced glycation end products (AGEs) that play an important role in retinopathy. In addition, the receptor for AGEs (RAGE) is ubiquitously expressed in various retinal cells and is upregulated in the retinas of diabetic patients, resulting in activation of pro-oxidant and proinflammatory signaling pathways. This AGE-RAGE axis appears to play a central role in the sustained inflammation, neurodegeneration, and retinal microvascular dysfunction occurring during diabetic retinopathy. The nature of AGE formation and RAGE signaling bring forward possibilities for therapeutic intervention. The multiple components of the AGE-RAGE axis, including signal transduction, formation of ligands, and the end-point effectors, may be promising targets for strategies to treat diabetic retinopathy.
                Bookmark

                Author and article information

                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                03 March 2016
                March 2016
                : 8
                : 3
                : 140
                Affiliations
                Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea; ssen4022@ 123456kiom.re.kr (E.S.); dvmhyun@ 123456kiom.re.kr (J.K.); chskim@ 123456kiom.re.kr (C.-S.K.); candykong@ 123456kiom.re.kr (Y.M.L.)
                Author notes
                [* ]Correspondence: jskim@ 123456kiom.re.kr ; Tel.: +82-42-868-9465; Fax: +82-42-868-9471
                Article
                nutrients-08-00140
                10.3390/nu8030140
                4808869
                26950148
                2af7511a-3072-43b7-a3bf-7c65e9f563ed
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 06 November 2015
                : 25 February 2016
                Categories
                Article

                Nutrition & Dietetics
                diabetic retinopathy,high-mobility group box-1,receptor for advanced glycation end products,nuclear factor-kappa b

                Comments

                Comment on this article