60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hyperbaric oxygen in chronic traumatic brain injury: oxygen, pressure, and gene therapy

      research-article
      Medical Gas Research
      BioMed Central
      Hyperbaric, Oxygen, Traumatic, Brain, Injury, Concussion, Pressure, Gene, Therapy, Veteran

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hyperbaric oxygen therapy is a treatment for wounds in any location and of any duration that has been misunderstood for 353 years. Since 2008 it has been applied to the persistent post-concussion syndrome of mild traumatic brain injury by civilian and later military researchers with apparent conflicting results. The civilian studies are positive and the military-funded studies are a mixture of misinterpreted positive data, indeterminate data, and negative data. This has confused the medical, academic, and lay communities. The source of the confusion is a fundamental misunderstanding of the definition, principles, and mechanisms of action of hyperbaric oxygen therapy. This article argues that the traditional definition of hyperbaric oxygen therapy is arbitrary. The article establishes a scientific definition of hyperbaric oxygen therapy as a wound-healing therapy of combined increased atmospheric pressure and pressure of oxygen over ambient atmospheric pressure and pressure of oxygen whose main mechanisms of action are gene-mediated. Hyperbaric oxygen therapy exerts its wound-healing effects by expression and suppression of thousands of genes. The dominant gene actions are upregulation of trophic and anti-inflammatory genes and down-regulation of pro-inflammatory and apoptotic genes. The combination of genes affected depends on the different combinations of total pressure and pressure of oxygen. Understanding that hyperbaric oxygen therapy is a pressure and oxygen dose-dependent gene therapy allows for reconciliation of the conflicting TBI study results as outcomes of different doses of pressure and oxygen.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Hyperbaric Oxygen Therapy Can Improve Post Concussion Syndrome Years after Mild Traumatic Brain Injury - Randomized Prospective Trial

          Background Traumatic brain injury (TBI) is the leading cause of death and disability in the US. Approximately 70-90% of the TBI cases are classified as mild, and up to 25% of them will not recover and suffer chronic neurocognitive impairments. The main pathology in these cases involves diffuse brain injuries, which are hard to detect by anatomical imaging yet noticeable in metabolic imaging. The current study tested the effectiveness of Hyperbaric Oxygen Therapy (HBOT) in improving brain function and quality of life in mTBI patients suffering chronic neurocognitive impairments. Methods and Findings The trial population included 56 mTBI patients 1–5 years after injury with prolonged post-concussion syndrome (PCS). The HBOT effect was evaluated by means of prospective, randomized, crossover controlled trial: the patients were randomly assigned to treated or crossover groups. Patients in the treated group were evaluated at baseline and following 40 HBOT sessions; patients in the crossover group were evaluated three times: at baseline, following a 2-month control period of no treatment, and following subsequent 2-months of 40 HBOT sessions. The HBOT protocol included 40 treatment sessions (5 days/week), 60 minutes each, with 100% oxygen at 1.5 ATA. “Mindstreams” was used for cognitive evaluations, quality of life (QOL) was evaluated by the EQ-5D, and changes in brain activity were assessed by SPECT imaging. Significant improvements were demonstrated in cognitive function and QOL in both groups following HBOT but no significant improvement was observed following the control period. SPECT imaging revealed elevated brain activity in good agreement with the cognitive improvements. Conclusions HBOT can induce neuroplasticity leading to repair of chronically impaired brain functions and improved quality of life in mTBI patients with prolonged PCS at late chronic stage. Trial Registration ClinicalTrials.gov NCT00715052
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A phase I study of low-pressure hyperbaric oxygen therapy for blast-induced post-concussion syndrome and post-traumatic stress disorder.

            This is a preliminary report on the safety and efficacy of 1.5 ATA hyperbaric oxygen therapy (HBOT) in military subjects with chronic blast-induced mild to moderate traumatic brain injury (TBI)/post-concussion syndrome (PCS) and post-traumatic stress disorder (PTSD). Sixteen military subjects received 40 1.5 ATA/60 min HBOT sessions in 30 days. Symptoms, physical and neurological exams, SPECT brain imaging, and neuropsychological and psychological testing were completed before and within 1 week after treatment. Subjects experienced reversible middle ear barotrauma (5), transient deterioration in symptoms (4), and reversible bronchospasm (1); one subject withdrew. Post-treatment testing demonstrated significant improvement in: symptoms, neurological exam, full-scale IQ (+14.8 points; p<0.001), WMS IV Delayed Memory (p=0.026), WMS-IV Working Memory (p=0.003), Stroop Test (p<0.001), TOVA Impulsivity (p=0.041), TOVA Variability (p=0.045), Grooved Pegboard (p=0.028), PCS symptoms (Rivermead PCSQ: p=0.0002), PTSD symptoms (PCL-M: p<0.001), depression (PHQ-9: p<0.001), anxiety (GAD-7: p=0.007), quality of life (MPQoL: p=0.003), and self-report of percent of normal (p<0.001), SPECT coefficient of variation in all white matter and some gray matter ROIs after the first HBOT, and in half of white matter ROIs after 40 HBOT sessions, and SPECT statistical parametric mapping analysis (diffuse improvements in regional cerebral blood flow after 1 and 40 HBOT sessions). Forty 1.5 ATA HBOT sessions in 1 month was safe in a military cohort with chronic blast-induced PCS and PTSD. Significant improvements occurred in symptoms, abnormal physical exam findings, cognitive testing, and quality-of-life measurements, with concomitant significant improvements in SPECT.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Relationship of oxygen dose to angiogenesis induction in irradiated tissue.

              This study was accomplished in an irradiated rabbit model to assess the angiogenic properties of normobaric oxygen and hyperbaric oxygen as compared with air-breathing controls. Results indicated that normobaric oxygen had no angiogenic properties above normal revascularization of irradiated tissue than did air-breathing controls (p = 0.89). Hyperbaric oxygen demonstrated an eight- to ninefold increased vascular density over both normobaric oxygen and air-breathing controls (p = 0.001). Irradiated tissue develops a hypovascular-hypocellular-hypoxic tissue that does not revascularize spontaneously. Results failed to demonstrate an angiogenic effect of normobaric oxygen. It is suggested that oxygen in this sense is a drug requiring hyperbaric pressures to generate therapeutic effects on chronically hypovascular irradiated tissue.
                Bookmark

                Author and article information

                Contributors
                paulharchmd@gmail.com , pharch@lsuhsc.edu
                Journal
                Med Gas Res
                Med Gas Res
                Medical Gas Research
                BioMed Central (London )
                2045-9912
                14 July 2015
                14 July 2015
                2015
                : 5
                : 9
                Affiliations
                Section of Emergency Medicine, Department of Medicine, Louisiana State University School of Medicine, 1542 Tulane Avenue, Rm. 452, Box T4M2, New Orleans, LA 70112 USA
                Article
                30
                10.1186/s13618-015-0030-6
                4499900
                26171141
                2afb8448-fd86-44eb-8062-ff0685fd84f3
                © Harch. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 30 May 2015
                : 4 July 2015
                Categories
                Commentary
                Custom metadata
                © The Author(s) 2015

                Molecular medicine
                hyperbaric,oxygen,traumatic,brain,injury,concussion,pressure,gene,therapy,veteran
                Molecular medicine
                hyperbaric, oxygen, traumatic, brain, injury, concussion, pressure, gene, therapy, veteran

                Comments

                Comment on this article