8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Temperature dependence of the spin Hall angle and switching current in the nc-W(O)/CoFeB/MgO system with perpendicular magnetic anisotropy

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We investigated the temperature dependence of the switching current for a perpendicularly magnetized CoFeB film deposited on a nanocrystalline tungsten film with large oxygen content: nc-W(O). The spin Hall angle \(|\Theta_\mathrm{SH}| \approx 0.22\) is independent of temperature, whereas the switching current increases strongly at low temperature. We show that the nc-W(O) is insensitive to annealing. It thus can be a good choice for the integration of spin Hall driven writing of information in magnetic memory or logic devices that require a high-temperature annealing process during fabrication.

          Related collections

          Most cited references1

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Spin torque switching with the giant spin Hall effect of tantalum

          We report a giant spin Hall effect (SHE) in {\beta}-Ta that generates spin currents intense enough to induce efficient spin-transfer-torque switching of ferromagnets, thereby providing a new approach for controlling magnetic devices that can be superior to existing technologies. We quantify this SHE by three independent methods and demonstrate spin-torque (ST) switching of both out-of-plane and in-plane magnetized layers. We implement a three-terminal device that utilizes current passing through a low impedance Ta-ferromagnet bilayer to effect switching of a nanomagnet, with a higher-impedance magnetic tunnel junction for read-out. The efficiency and reliability of this device, together with its simplicity of fabrication, suggest that this three-terminal SHE-ST design can eliminate the main obstacles currently impeding the development of magnetic memory and non-volatile spin logic technologies.
            Bookmark

            Author and article information

            Journal
            2016-08-08
            Article
            1608.02528
            2b0fabe8-4a0c-406a-9bda-68e177476b11

            http://arxiv.org/licenses/nonexclusive-distrib/1.0/

            History
            Custom metadata
            4 pages, 4 figures
            cond-mat.mtrl-sci

            Condensed matter
            Condensed matter

            Comments

            Comment on this article