6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Exogenous vs. endogenous γ-glutamyltransferase activity: Implications for the specific determination of S-nitrosoglutathione in biological samples

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The determination of S-nitrosoglutathione (GSNO) levels in biological fluids is controversial, partly due to the laborious sample handling and multiple pretreatment steps required by current techniques. GSNO decomposition can be effected by the enzyme gamma-glutamyltransferase (GGT), whose involvement in GSNO metabolism has been suggested. We have set up a novel analytical method for the selective determination and speciation of GSNO and its metabolite S-nitrosocysteinylglycine, based on liquid chromatography separation coupled to on-line enzymatic hydrolysis of GSNO by commercial GGT. In a post-column reaction coil, GGT allows the specific hydrolysis of the gamma-glutamyl moiety of GSNO, and the S-nitrosocysteinylglycine (GCNO) thus formed is decomposed by copper ions originating oxidized cysteinylglycine and nitric oxide (NO). NO immediately reacts with 4,5-diaminofluorescein (DAF-2) forming a triazole derivative, which is detected fluorimetrically. The limit of quantitation (LOQc) for GSNO and GCNO in plasma ultrafiltrate was 5 nM, with a precision (CV) of 1-6% within the 5-1500 nM dynamic linear range. The method was applied to evaluate the recovery of exogenous GSNO after addition of aliquots to human plasma samples presenting with different total GGT activities. By inhibiting GGT activity in a time dependent manner, it was thus observed that the recovery of GSNO is inversely correlated with plasmatic levels of endogenous GGT, which indicates the need for adequate inhibition of endogenous GGT activity for the reliable determination of endogenous GSNO.

          Related collections

          Author and article information

          Journal
          Archives of Biochemistry and Biophysics
          Archives of Biochemistry and Biophysics
          Elsevier BV
          00039861
          July 2009
          July 2009
          : 487
          : 2
          : 146-152
          Article
          10.1016/j.abb.2009.05.012
          19467221
          2b1a2ae2-1621-4449-a588-6f273309ee6a
          © 2009

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article