23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Leaf orientation, light interception and stomatal conductance of Eucalyptus globulus ssp. globulus leaves.

      Tree Physiology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Juvenile and adult leaves of the heteroblastic species Eucalyptus globulus Labill. ssp. globulus did not show active diurnal orientation toward or away from incident radiation. Juvenile leaves of a late-maturing sapling of a Tasmanian provenance were evenly distributed in all azimuth sectors. In contrast, an early-maturing sapling of the same age from Wilsons Promontory, Victoria had a predominance of adult leaf blades facing east and west. Mid-vein and blade angles of juvenile and adult leaves were non-random with an overall vertical declination of the leaves. Both leaf types intercepted a greater irradiance during the morning than at midday. Sub-horizontal juvenile leaves intercepted 22% more irradiance than vertical adult leaves during the middle of the day. The amphistomatal and isobilateral adult leaves intercepted sunlight equally on both leaf surfaces. Stomatal conductance was variable during the period of measurement but was similar for the Tasmanian juvenile (0.4 to 0.9 cm s(-1)) leaves and Wilsons Promontory adult (0.5 to 1.2 cm s(-1)) leaves. Greater light interception by the sub-horizontal juvenile leaves would confer a growth advantage to saplings and regenerating canopies. Reduced light interception and leaf temperature of vertical adult E. globulus leaves would assist in water conservation, particularly at high solar angles.

          Related collections

          Author and article information

          Journal
          12651502
          10.1093/treephys/20.12.815

          Comments

          Comment on this article