55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Import of proteins into the peroxisomal matrix

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Peroxisomes constitute a dynamic compartment in all nucleated cells. They fulfill diverse metabolic tasks in response to environmental changes and cellular demands. This adaptation is implemented by modulation of the enzyme content of the organelles, which is accomplished by dynamically operating peroxisomal protein transport machineries. Soluble import receptors recognize their newly synthesized cargo proteins in the cytosol and ferry them to the peroxisomal membrane. Subsequently, the cargo is translocated into the matrix, where the receptor is ubiquitinated and exported back to the cytosol for further rounds of matrix protein import. This review discusses the recent progress in our understanding of the peroxisomal matrix protein import and its regulation by ubiquitination events as well as the current view on the translocation mechanism of folded proteins into peroxisomes. This article is part of a Special Issue entitled: Origin and spatiotemporal dynamics of the peroxisomal endomembrane system.

          Related collections

          Most cited references126

          • Record: found
          • Abstract: found
          • Article: not found

          Peroxisomes are signaling platforms for antiviral innate immunity.

          Peroxisomes have long been established to play a central role in regulating various metabolic activities in mammalian cells. These organelles act in concert with mitochondria to control the metabolism of lipids and reactive oxygen species. However, while mitochondria have emerged as an important site of antiviral signal transduction, a role for peroxisomes in immune defense is unknown. Here, we report that the RIG-I-like receptor (RLR) adaptor protein MAVS is located on peroxisomes and mitochondria. We find that peroxisomal and mitochondrial MAVS act sequentially to create an antiviral cellular state. Upon viral infection, peroxisomal MAVS induces the rapid interferon-independent expression of defense factors that provide short-term protection, whereas mitochondrial MAVS activates an interferon-dependent signaling pathway with delayed kinetics, which amplifies and stabilizes the antiviral response. The interferon regulatory factor IRF1 plays a crucial role in regulating MAVS-dependent signaling from peroxisomes. These results establish that peroxisomes are an important site of antiviral signal transduction. Copyright (c) 2010 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanism and function of deubiquitinating enzymes.

            Attachment of ubiquitin to proteins is a crucial step in many cellular regulatory mechanisms and contributes to numerous biological processes, including embryonic development, the cell cycle, growth control, and prevention of neurodegeneration. In these diverse regulatory settings, the most widespread mechanism of ubiquitin action is probably in the context of protein degradation. Polyubiquitin attachment targets many intracellular proteins for degradation by the proteasome, and (mono)ubiquitination is often required for down-regulating plasma membrane proteins by targeting them to the vacuole (lysosome). Ubiquitin-protein conjugates are highly dynamic structures. While an array of enzymes directs the conjugation of ubiquitin to substrates, there are also dozens of deubiquitinating enzymes (DUBs) that can reverse the process. Several lines of evidence indicate that DUBs are important regulators of the ubiquitin system. These enzymes are responsible for processing inactive ubiquitin precursors, proofreading ubiquitin-protein conjugates, removing ubiquitin from cellular adducts, and keeping the 26S proteasome free of inhibitory ubiquitin chains. The present review focuses on recent discoveries that have led to a better understanding the mechanisms and physiological roles of this diverse and still poorly understood group of enzymes. We also discuss briefly some of the proteases that act on ubiquitin-like protein (UBL) conjugates and compare them to DUBs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The twin-arginine translocation (Tat) protein export pathway.

              The twin-arginine translocation (Tat) protein export system is present in the cytoplasmic membranes of most bacteria and archaea and has the highly unusual property of transporting fully folded proteins. The system must therefore provide a transmembrane pathway that is large enough to allow the passage of structured macromolecular substrates of different sizes but that maintains the impermeability of the membrane to ions. In the Gram-negative bacterium Escherichia coli, this complex task can be achieved by using only three small membrane proteins: TatA, TatB and TatC. In this Review, we summarize recent advances in our understanding of how this remarkable machine operates.
                Bookmark

                Author and article information

                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                12 August 2013
                24 September 2013
                2013
                : 4
                : 261
                Affiliations
                [1] 1Systembiochemie, Medizinische Fakultät, Ruhr-Universität Bochum Bochum, Germany
                [2] 2Biochemie Intrazellulärer Transportprozesse, Medizinische Fakultät, Ruhr-Universität Bochum Bochum, Germany
                Author notes

                Edited by: Richard Rachubinski, University of Alberta, Canada

                Reviewed by: Giovanni Solinas, University of Fribourg, Switzerland; Maike Krenz, University of Missouri-Columbia, USA

                *Correspondence: Harald W. Platta, Biochemie Intrazellulärer Transportprozesse, Medizinische Fakultät, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany e-mail: harald.platta@ 123456rub.de;
                Ralf Erdmann, Systembiochemie, Medizinische Fakultät, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany e-mail: ralf.erdmann@ 123456rub.de

                This article was submitted to Integrative Physiology, a section of the journal Frontiers in Physiology.

                Article
                10.3389/fphys.2013.00261
                3781343
                24069002
                2b239706-a6d8-4a02-8f68-8803af4ed73d
                Copyright © 2013 Hasan, Platta and Erdmann.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 July 2013
                : 03 September 2013
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 134, Pages: 12, Words: 10383
                Categories
                Physiology
                Review Article

                Anatomy & Physiology
                peroxisome,protein import,ubiquitination,biogenesis,translocation,targeting
                Anatomy & Physiology
                peroxisome, protein import, ubiquitination, biogenesis, translocation, targeting

                Comments

                Comment on this article