30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Keeping It Local: Evidence for Positive Selection in Swedish Arabidopsis thaliana

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Detecting positive selection in species with heterogeneous habitats and complex demography is notoriously difficult and prone to statistical biases. The model plant Arabidopsis thaliana exemplifies this problem: In spite of the large amounts of data, little evidence for classic selective sweeps has been found. Moreover, many aspects of the demography are unclear, which makes it hard to judge whether the few signals are indeed signs of selection, or false positives caused by demographic events. Here, we focus on Swedish A. thaliana and we find that the demography can be approximated as a two-population model. Careful analysis of the data shows that such a two island model is characterized by a very old split time that significantly predates the last glacial maximum followed by secondary contact with strong migration. We evaluate selection based on this demography and find that this secondary contact model strongly affects the power to detect sweeps. Moreover, it affects the power differently for northern Sweden (more false positives) as compared with southern Sweden (more false negatives). However, even when the demographic history is accounted for, sweep signals in northern Sweden are stronger than in southern Sweden, with little or no positional overlap. Further simulations including the complex demography and selection confirm that this is not compatible with global selection acting on both populations, and thus can be taken as evidence for local selection within subpopulations of Swedish A. thaliana. This study demonstrates the necessity of combining demographic analyses and sweep scans for the detection of selection, particularly when selection acts predominantly local.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana.

          To take complete advantage of information on within-species polymorphism and divergence from close relatives, one needs to know the rate and the molecular spectrum of spontaneous mutations. To this end, we have searched for de novo spontaneous mutations in the complete nuclear genomes of five Arabidopsis thaliana mutation accumulation lines that had been maintained by single-seed descent for 30 generations. We identified and validated 99 base substitutions and 17 small and large insertions and deletions. Our results imply a spontaneous mutation rate of 7 x 10(-9) base substitutions per site per generation, the majority of which are G:C-->A:T transitions. We explain this very biased spectrum of base substitution mutations as a result of two main processes: deamination of methylated cytosines and ultraviolet light-induced mutagenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genomic scans for selective sweeps using SNP data.

            Detecting selective sweeps from genomic SNP data is complicated by the intricate ascertainment schemes used to discover SNPs, and by the confounding influence of the underlying complex demographics and varying mutation and recombination rates. Current methods for detecting selective sweeps have little or no robustness to the demographic assumptions and varying recombination rates, and provide no method for correcting for ascertainment biases. Here, we present several new tests aimed at detecting selective sweeps from genomic SNP data. Using extensive simulations, we show that a new parametric test, based on composite likelihood, has a high power to detect selective sweeps and is surprisingly robust to assumptions regarding recombination rates and demography (i.e., has low Type I error). Our new test also provides estimates of the location of the selective sweep(s) and the magnitude of the selection coefficient. To illustrate the method, we apply our approach to data from the Seattle SNP project and to Chromosome 2 data from the HapMap project. In Chromosome 2, the most extreme signal is found in the lactase gene, which previously has been shown to be undergoing positive selection. Evidence for selective sweeps is also found in many other regions, including genes known to be associated with disease risk such as DPP10 and COL4A3.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Whole-genome sequencing of multiple Arabidopsis thaliana populations.

              The plant Arabidopsis thaliana occurs naturally in many different habitats throughout Eurasia. As a foundation for identifying genetic variation contributing to adaptation to diverse environments, a 1001 Genomes Project to sequence geographically diverse A. thaliana strains has been initiated. Here we present the first phase of this project, based on population-scale sequencing of 80 strains drawn from eight regions throughout the species' native range. We describe the majority of common small-scale polymorphisms as well as many larger insertions and deletions in the A. thaliana pan-genome, their effects on gene function, and the patterns of local and global linkage among these variants. The action of processes other than spontaneous mutation is identified by comparing the spectrum of mutations that have accumulated since A. thaliana diverged from its closest relative 10 million years ago with the spectrum observed in the laboratory. Recent species-wide selective sweeps are rare, and potentially deleterious mutations are more common in marginal populations.
                Bookmark

                Author and article information

                Journal
                Mol Biol Evol
                Mol. Biol. Evol
                molbev
                molbiolevol
                Molecular Biology and Evolution
                Oxford University Press
                0737-4038
                1537-1719
                November 2014
                25 August 2014
                25 August 2014
                : 31
                : 11
                : 3026-3039
                Affiliations
                1Mathematics and BioSciences Group, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
                2Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
                3Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
                4Department of Mathematics, University of Vienna, Vienna, Austria
                5Department of Human Genetics & Anthropology, LMU, Munich, Germany
                Author notes
                *Corresponding author: E-mail: hellmann@ 123456bio.lmu.de .

                Associate editor: Yuseob Kim

                Article
                msu247
                10.1093/molbev/msu247
                4209139
                25158800
                2b261ca2-891b-4fc7-8420-82f22b20053d
                © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                Page count
                Pages: 14
                Categories
                Discoveries

                Molecular biology
                local adaptation,selective sweeps,demography,arabidopsis thaliana
                Molecular biology
                local adaptation, selective sweeps, demography, arabidopsis thaliana

                Comments

                Comment on this article